Utilization and Development of Associated Rare Earth Resources of the Iron Ore in Yen Bai Province, Vietnam
-
摘要: 这是一篇冶金工程领域的论文。针对越南安沛地区某铁矿尾矿磁选后得到的含稀土富集物无法直接利用问题,采用硫酸焙烧工艺、萃取富集转型技术对其进行实验开发,考查硫酸焙烧、水浸、除杂、转型等过程的工艺参数对实验效果的影响,确定较佳工艺技术条件。实验表明,采用酸矿比(体积∶质量)=0.7,焙烧温度250 ℃,焙烧时间2 h,浸出水∶矿=4进行焙烧和水浸,以除杂剂浓度0.1 g/mL,除杂终点pH值=4.2进行除杂,以O∶A=1.5~2进行5级逆流萃取,O∶A=10∶1进行5级逆流反萃,整体收率可达90.1%~92.88%,稀土浓度在1.5 mol/L左右,杂质铁、铝含量均低于100 mg/L,满足工业化应用的需求,实现对越南安沛铁矿伴生稀土资源开发利用。Abstract: This is an essay in the field of metallurgical engineering. Aiming at the problem that the rare earth enrichment after magnetic separation of iron ore tailings in Yen Bai Province, Vietnam cannot be directly utilized, the sulfuric acid roasting process and extraction and enrichment transformation technology are used to carry out experimental development. The process parameters of sulfuric acid roasting, water leaching, impurity removal, transformation and other processes were systematically studied and observed how work on the effect of the experiment and the most optimum technological conditions were determined. The experiment showed the acid and ore ratio (volume: mass) is 0.7, the roasting temperature is 250 degrees Celsius, the roasting time is 2 hours, the leaching water and ore ratio is 4, and the roasting and leaching process was carried out under the above conditions. Impurity removal was carried out with a concentration of 0.1 g/mL and a pH of 4.2 as the endpoint. The grade 5 counter-current extraction was carried out under the O/A of 1.5~2, the 5 counter-current back extraction was carried out under the O/A rate of 10:1, the overall recovery rate reached 90.1%-92.88%, the rare earth concentrations is 1.5 mol/L, the content of iron and aluminum is lower than 100 μg/mL, and met the requirement of the industrial applications, and realized the utilization and development of the accompanied rare earth resources of the iron ore tailings in Yen Bai Province, Vietnam.
-
表 1 安沛矿半定量分析检测结果/%
Table 1. Semi-quantitative analysis and detection results of Yen Bai mine
Fe2O3 SiO2 Al2O3 K2O MgO TiO2 CaO Y2O3 Nd2O3 La2O3 Gd2O3 45.5 19.4 5.3 0.1 3.1 1.1 0.7 11.4 4.3 1.8 1.6 Sm2O3 Dy2O3 Yb2O3 Er2O3 Pr6O11 MnO ThO2 Co2O3 BaO SO3 U3O8 1.3 1.2 0.7 0.6 0.5 0.5 0.2 0.2 0.2 0.1 0.07 表 2 浸出液参数
Table 2. Leachate parameters
TREO H+ Fe2O3 Al2O3 20.67 g/L 1.800 mol/L 23719 mg/L 16054 mg/L 表 3 除杂剂浓度对收率影响
Table 3. Effect of impurity remover concentration on yield
MgO浆液浓度/
(g/mL)pH值 Fe2O3/
(mg/L)Al2O3/
(mg/L)回收率/
%1 4.4 <100 <100 69.67 0.5 4.4 <100 <100 80.04 0.1 4.4 <100 <100 94.18 0.05 4.4 <100 <100 95.26 表 4 不同pH值终点实验结果
Table 4. Test results of different pH endpoints
pH值 Fe2O3/(mg/L) Al2O3/(mg/L) 回收率/% 4.1 274 219 96.13 4.2 133 110 94.18 4.3 <100 <100 88.15 4.4 <100 <100 85.18 4.5 <100 <100 80.75 5.0 <100 <100 70.23 表 5 萃取条件及结果
Table 5. Extraction conditions and results
有机皂化
度/(mol/L)料液稀土浓
度/(mol/L)O∶A 负载有机稀土
浓度/(mol/L)余液稀土
浓度/(mol/L)0.45~0.6 0.105 1∶1 0.1 <0.01 0.45~0.6 0.105 1∶1.5 0.156 <0.01 0.45~0.6 0.105 1∶2 0.21 <0.01 0.45~0.6 0.105 1∶3 到第三级时乳化 <0.01 表 6 反萃条件及结果
Table 6. Stripping conditions and results
负载有机
浓度/
(mol/L)盐酸
浓度/
(mol/L)O∶A 反萃液
稀土浓度/
(mol/L)反萃液H+浓度/
(mol/L)回收率/%
(按除杂后
硫酸稀土)0.156 6 10∶2 0.7762 3.57 99.51 0.156 6 10∶1.5 1.0294 2.76 98.98 0.156 6 10∶1 1.5321 1.18 98.21 0.156 6 10∶0.8 1.8427 0.41 94.50 表 7 综合实验结果
Table 7. Comprehensive test results
实验编号 稀土收率/% REO浓度/
(mol/L)Fe2O3/
(mg/L)Al2O3/
(mg/L)1 92.88 1.5451 <100 <100 2 92.35 1.4687 <100 <100 3 90.1 1.5226 <100 <100 4 92.27 1.5372 <100 <100 5 90.98 1.4815 <100 <100 -
[1] 徐光宪. 稀土: 上册[M]. 北京: 冶金工业出版社, 1995.XU G X. Rare earth: volume I [M]. Beijing: Metallurgical Industry Press, 1995. [2] 朱明刚, 孙旭, 刘荣辉, 等. 稀土功能材料2035发展战略研究[J]. 中国工程科学, 2020(5):37-43. ZHU M G, SUN X, LIU R H, et al. Research on the development strategy of rare earth functional materials in 2035[J]. China Engineering Science, 2020(5):37-43.ZHU M G, SUN X, LIU R H, et al. Research on the development strategy of rare earth functional materials in 2035[J]. China Engineering Science, 2020(5): 37-43. [3] 张惠, 康博文, 田春秋. 全球稀土二次资源回收利用进展[J]. 矿产综合利用, 2022(3):86-94. ZHANG H, KANG B W, TIAN C Q. Analysis on recovery and utilization of global rare earth secondary resources[J]. Multipurpose Utilization of Mineral Resources, 2022(3):86-94.ZHANG H, KANG B W, TIAN C Q. Analysis on recovery and utilization of global rare earth secondary resources[J]. Multipurpose Utilization of Mineral Resources, 2022(3): 86-94. [4] 李超, 刘述平, 徐凌飞, 等. 高铁稀土精矿硫酸焙烧—浸出实验[J]. 有色金属(冶炼部分), 2021(4):36-40. LI C, LIU S P, XU L F, et al. Sulfuric acid roasting-leaching test of high-speed rare earth concentrates[J]. Nonferrous Metals (Extractive Metallurgy), 2021(4):36-40.LI C, LIU S P, XU L F, et al. Sulfuric acid roasting-leaching test of high-speed rare earth concentrates [J]. Nonferrous Metals (Extractive Metallurgy), 2021(4): 36-40. [5] 张苏江, 张立伟, 张彦文, 等. 国内外稀土矿产资源及其分布概述[J]. 无机盐工业, 2020(52):9-16. ZHANG S J, ZHANG L W, ZHANG Y W, et al. An overview of rare earth mineral resources and their distribution at home and abroad[J]. Inorganic Salt Industry, 2020(52):9-16.ZHANG S J, ZHANG L W, ZHANG Y W, et al. An overview of rare earth mineral resources and their distribution at home and abroad [J]. Inorganic Salt Industry, 2020(52): 9-16. [6] 张可能, 赵玉凤. 越南的金属矿物资源[J]. 世界采矿快报, 1990, 6(18):4-6. ZHANG K N, ZHAO Y F. Metal mineral resources in Vietnam[J]. World Mining Express, 1990, 6(18):4-6.ZHANG K N, ZHAO Y F. Metal mineral resources in Vietnam [J]. World Mining Express, 1990, 6(18): 4-6. [7] 李潇雨, 惠博, 熊文良, 等. 白云鄂博稀土资源综合利用现状概述[J]. 矿产综合利用, 2021(5):17-24. LI X Y, HUI B, XIONG W L, et al. Multipurpose utilization of rare earth resources in Bayan Obo[J]. Multipurpose Utilization of Mineral Resources, 2021(5):17-24.LI X Y, HUI B, XIONG W L, et al. Multipurpose utilization of rare earth resources in Bayan Obo[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 17-24. [8] 硫酸焙烧-萃取法冶炼包头稀土精矿工艺技术[R]. 北京: 北京有色金属研究总院, 2011.Technology of smelting Baotou rare earth concentrate by sulfuric acid roasting-extraction method[R]. Beijing: Beijing General Research Institute for Nonferrous Metals, 2011. [9] 杨珍, 何利华, 郭福亮. 氢氧化钠分解独居石的热力学分析[J]. 稀有金属与硬质合金, 2016, 44(6):13-17. YANG Z, HE L H, GUO F L. Thermodynamic analysis of monazite decomposed by sodium hydroxide[J]. Rare Metals and Cemented Carbides, 2016, 44(6):13-17.YANG Z , HE L H, GUO F L. Thermodynamic analysis of monazite decomposed by sodium hydroxide [J]. Rare Metals and Cemented Carbides, 2016, 44(6): 13-17. [10] 马莹, 许延辉, 常叔, 等. 包头稀土精矿浓硫酸低温焙烧工艺技术研究[J]. 稀土, 2010, 31(2):20-23. MA Y, XU Y H, CHANG S, et al. Study on the decomposition of Baotou rare earth concentrate[J]. Chinese Rare Earths, 2010, 31(2):20-23.MA Y, XU Y H, CHANG S, et al. Study on the decomposition of Baotou rare earth concentrate[J]. Chinese Rare Earths, 2010, 31(2): 20-23. [11] 茹宗玲, 张长松. 菱镁矿生产轻质氧化镁除杂(铁、铝)工艺的研究[J]. 安阳工学院学报, 2005(4):11-12. RU Z L, ZHANG C S. Study on the technology of removing impurities (iron, aluminum) from magnesite to produce light magnesia[J]. Journal of Anyang Institute of Technology, 2005(4):11-12.RU Z L, ZHANG C S. Study on the technology of removing impurities (iron, aluminum) from magnesite to produce light magnesia[J]. Journal of Anyang Institute of Technology, 2005(4): 11-12. [12] 李艳玲, 廖伍平. 稀土萃取剂研究进展[J]. 中国科学:化学, 2020, 50(11):1473-1485. LI Y L, LIAO W P. Research progress of rare earth extractants[J]. Science China:Chemistry, 2020, 50(11):1473-1485.LI Y L, LIAO W P. Research progress of rare earth extractants[J]. Science China: Chemistry, 2020, 50(11): 1473-1485. [13] 赵龙胜, 冯宗玉, 董金诗, 等. 离子型稀土矿镁盐复合浸取-无铵沉淀富集稀土技术[C]. 中国稀土学会2017学术年会摘要集. 2017: 71.ZHAO L S, FENG Z Y, DONG J S, et al. Ion-type rare earth ore magnesium salt composite leaching-ammonium-free precipitation enrichment rare earth technology [C]. The Chinese Society of Rare Earths 2017 Academic Annual Meeting Abstracts . 2017: 71. -