Recovery of Rare Earths from Polishing Waste
-
摘要: 这是一篇冶金工程领域的论文。以稀土抛光粉废料为原料,通过正交实验设计,首先进行废料与硫酸铵和硫酸氢铵混合物的焙烧实验,使稀土氧化物转化为硫酸盐。实验考查3个因素,每个因素取3个水平,选用正交表L9(34),安排了9个实验,统计分析实验结果:焙烧温度取480 ℃,焙烧时间取3 h,质量比取1.8∶1。然后在酸浸液中加入0.2%的硫脲作还原剂,研究用稀硫酸从焙烧固相中浸出稀土的工艺条件。实验考查4个因素,每个因素取4个水平,选用正交表L16(45),安排了16个实验,统计分析实验结果:酸浸温度取90 ℃,硫酸浓度取0.5 mol/L,浸出时间取4 h,稀硫酸与焙烧固相的液固比(质量)取4:1,稀土的浸出率可达97.8%~98.0%。Abstract: This is an essay in the field of metallurgical engineering. Using rare earth polishing powder waste as raw material, an orthogonal experimental design was used to convert rare earth oxides into sulfates by first conducting roasting experiments of the waste with a mixture of ammonium sulfate and ammonium bisulfate. The orthogonal experiment with 3 factors and 3 levels was carried out by using the orthogonal table L9(34) and statistically analyzed the test results: the roasting temperature was 480 ℃, the roasting time was 3 h, and the mass ratio was 1.8:1. In the second step, 0.2% thiourea was added to the acid leaching solution as reducing agent, and the technological conditions of leaching rare earth from the calcined solid phase with dilute sulfuric acid were studied. The orthogonal experiment with 4 factors and 4 levels was carried out by using the orthogonal table L16(45). The experimental result shows that on the condition of lixiviating temperature being 90 ℃, sulfuric acid thickness being 0.5 mol/L, lixiviating time being 4 h, liquid-to-solid quality ratio being 4∶1, the extraction rate of rare earths will reach 97.8%~98.0% in mass fraction.
-
表 1 抛光粉废料主要成分/%
Table 1. Main components of polishing powder waste
CeO2 La2O3 Pr6O11 Nd2O3 Y2O3 CaO Fe2O3 Al2O3 SiO2 61.88 32.44 0.47 <0.1 <0.1 0.05 0.08 0.03 4.55 表 2 焙烧实验的影响因素和水平
Table 2. Influencing factors and levels of roasting test
因素水平 1 2 3 A: 焙烧温度/℃ 300 390 480 B: 焙烧时间/h 1 2 3 C: 质量比 1.3∶1 1.8∶1 2.3∶1 表 3 焙烧正交实验
Table 3. Roasting orthogonal test
实验序号 列号/因素 浸出率 1 2 3 4 Y/% A B C 1 1 1 1 1 14.2 2 1 2 2 2 41.9 3 1 3 3 3 62.4 4 2 1 2 3 58.7 5 2 2 3 1 80.1 6 2 3 1 2 80.5 7 3 1 3 2 73.6 8 3 2 1 3 74.0 9 3 3 2 1 93.6 k1 39.5 48.8 56.2 62.6 k2 73.1 65.3 64.7 65.3 k3 80.4 78.8 72.0 65.0 r色度 40.9 30.0 15.8 2.7 表 4 焙烧方差分析
Table 4. Variance analysis of roasting test
方差来源 平方和 自由度 均方 F 值 显著性 A 2855.1 2 1427.5 217.3 ** B 1354.5 2 677.3 103.1 ** C 375.2 2 187.6 28.6 误差 13.1 2 6.6 总和 4597.9 8 F0.05(2,2)=19.00 表 5 稀土浸出实验的影响因素和水平
Table 5. Influence factors and levels of rare earth leaching test
因素水平 1 2 3 4 A:反应温度/ ℃ 30 50 70 90 B:硫酸浓度/(mol/L) 0.2 0.5 1.0 2 C:浸出时间/h 1 2 3 4 D:液固比(质量比) 2∶1 3∶1 4∶1 5∶1 表 6 浸出正交实验
Table 6. Orthogonal test of leaching
实验序号 列号/因素 稀土浸出率
Y/%1 2 3 4 5 A B C D 1 1 1 1 1 1 57.7 2 1 2 2 2 2 76.9 3 1 3 3 3 3 78.7 4 1 4 4 4 4 80.2 5 2 1 2 3 4 81.8 6 2 2 1 4 3 78.7 7 2 3 4 1 2 79.7 8 2 4 3 2 1 75.7 9 3 1 3 4 2 92.6 10 3 2 4 3 1 97.6 11 3 3 1 2 4 74.7 12 3 4 2 1 3 68.6 13 4 1 4 2 3 93.2 14 4 2 3 1 4 89.3 15 4 3 2 4 1 87.8 16 4 4 1 3 2 74.8 k1 73.4 81.3 71.5 73.8 79.7 k2 79.0 85.6 78.8 80.1 81.0 k3 83.4 80.2 84.1 83.2 79.8 k4 86.3 74.8 87.7 84.8 81.5 r 12.9 10.8 16.2 11.0 1.8 表 7 浸出方差分析
Table 7. Variance analysis of leaching test
方差
来源平方和 自由度 均方 F 值 显著性 A 378.8 3 126.3 39.8 * B 236.9 3 79.0 24.9 * C 594.8 3 198.3 62.5 * D 283.3 3 94.4 29.8 * 误差 9.5 3 3.2 总和 1503.3 15 F0.05(3,3)=9.28 -
[1] 罗天纵, 吴希桃, 包新军, 等. 废弃稀土抛光粉回收再利用研究进展[J]. 稀土, 2020, 41(3):95-104. LUO T Z, WU X T, BAO X J, et al. Research process in recovering and reutilizing of rare earth polishing powder wastes[J]. Chinese Rare Earths, 2020, 41(3):95-104.LUO T Z, WU X T, BAO X J, et al. Research process in recovering and reutilizing of rare earth polishing powder wastes[J]. Chinese Rare Earths, 2020, 41(3) : 95-104. [2] Poscher A, Luidold S, Antrekowitsch H. Extraction of cerium and lanthanum from spent glass polishing agent[J]. Proceedings of Materials Science & Technology, 2013: 543-552. [3] 史中原, 梅光军, 廖建东. 从低品位稀土抛光渣中回收CeO2的实验[J]. 金属矿山, 2017(12):194-197. SHI Z Y, MEI G J, LIAO J D. Experimental study on recovery of CeO2 from a low grade rare earth polishing slag[J]. Metal Mine, 2017(12):194-197.SHI Z Y, MEI G J, LIAO J D. Experimental study on recovery of CeO2 from a low grade rare earth polishing slag[J]. Metal Mine, 2017, (12) : 194-197. [4] 伍莺, 陈冬英, 欧阳红, 等. 从稀土抛光粉废料中回收稀土试验研究[J]. 湿法冶金, 2015, 34(5):398-401. WU Y, CHEN D Y, OU Y H, et al. Recovery of rareearth from waste polishing powders[J]. Hydrometallur-gy of China, 2015, 34(5):398-401.WU Y, CHEN D Y, OU Y H, et al. Recovery of rareearth from waste polishing powders[J]. Hydrometallur-gy of China, 2015, 34( 5) : 398-401. [5] 赵文怡, 孟志军, 刘海蛟, 等. 废抛光粉中稀土的回收[J]. 稀土, 2012, 33(6):75-78. ZHAO W Y, MENG Z J, LIU H J, et al. Recovery of rare earth from waste polishing powder[J]. Chinese Rare Earths, 2012, 33(6):75-78.ZHAO W Y, MENG Z J, LIU H J, et al. Recovery of rare earth from waste polishing powder[J]. Chinese Rare Earths, 2012, 33(6) : 75-78. [6] 罗磊. 从废弃稀土抛光粉中回收稀土金属的工艺条件研究[D]. 合肥: 合肥工业大学, 2015.LUO L. Technological conditions of recovering rare earthmetals from an abandoned rare earth polishing powder[D]. Hefei: Hefei University of Technology, 2015. [7] 周绿山. 硫酸铵与硫酸氢铵混合物催化热分解过程研究 [D]. 昆明: 昆明理工大学, 2014.ZHOU L S. Study on catalytic thermal decomposition of mixture of ammonium sulfate and ammonium bisulfate[D]. Kunming: Kunming University of Science and Technology, 2014. [8] 张智新. 改进的硫酸按分解法[P]. 中国: CN102079532A. 2011-06-01ZHANG Z X. Improved sulfuric acid decomposition method[P]. Chinese patent: CN102079532A. 2011-06-01 [9] 刘庆生, 吕英威, 段旭. 钕铁硼废料(NH4)2SO4焙烧法回收稀土[J]. 中国稀土学报, 2019, 37(1):91-98. LIU Q S, LU Y W, DUAN X. Recovery of rare earths from Nd Fe B waste (NH4)2SO4 by roasting[J]. Journal of the Chinese Society of Rare Earths, 2019, 37(1):91-98.LIU Q S, LU Y W, DUAN X. Recovery of rare earths from Nd Fe B waste (NH4)2SO4 by roasting[J]. Journal of the Chinese Society of Rare Earths, 2019, 37(1): 91-98. [10] Lu S D, Sun S C, Huang X X, et al. Optimization of recovering cerium from the waste polishing powder using response surface methodol-ogy[J]. Green Processing & Synthesis, 2017, 6(2):217-224. [11] 周筱桐. 稀土抛光粉再生利用技术的研究[D]. 长沙: 湖南大学, 2013.ZHOU X T. Study on recycling technology of rare earth polishing powder and application performance[D]. Changsha: Hunan University, 2013. [12] 周贺鹏, 胡洁. 离子型稀土矿化学溶浸影响因素及其调控[J]. 矿产综合利用, 2019(3):146-151. ZHOU H P, HU J. Influencing factors and control of chemical leaching of ion-type rare earth ore[J]. Multipurpose Utilization of Mineral Resources, 2019(3):146-151. doi: 10.3969/j.issn.1000-6532.2019.03.032ZHOU H P, HU J. Influencing factors and control of chemical leaching of ion-type rare earth ore[J]. Multipurpose Utilization of Mineral Resources, 2019(3): 146-151. doi: 10.3969/j.issn.1000-6532.2019.03.032 [13] 王吉华, 高玉梅, 阮琼. 碱性焙烧再次沉矾法回收黄铁矾渣中的铟[J]. 矿产综合利用, 2021(2):33-36. WANG J H, GAO Y M, RUAN Q. Recovery of indium from iron-vanadium slag by alkaline roasting and secondary alum process[J]. Multipurpose Utilization of Mineral Resources, 2021(2):33-36.WANG J H, GAO Y M, RUAN Q. Recovery of indium from iron-vanadium slag by alkaline roasting and secondary alum process [J]. Multipurpose Utilization of Mineral Resources, 2021(2): 33-36. [14] 赵继领, 王晨, 王仕兴, 等. 基于正交实验法优化废汽车尾气催化剂中贵金属的浸出[J]. 矿产综合利用, 2019(6):101-104. ZHAO J L, WANG C, WANG S X, et al. Optimization of leaching of noble metals from waste automobile exhaust catalyst by orthogonal method[J]. Multipurpose Utilization of Mineral Resources, 2019(6):101-104.ZHAO J L, WANG C, WANG S X, et al. Optimization of leaching of noble metals from waste automobile exhaust catalyst by orthogonal method[J]. Multipurpose Utilization of Mineral Resources, 2019(6): 101-104. [15] 韩诗华, 杨晓军, 余新文, 等. 四川某黏土矿中钪和钛的焙烧浸出实验研究[J]. 矿产综合利用, 2020(6):121-126. HAN S H, YANG X J, YU X W, et al. Experimental study on roast leaching of scandium and titanium from a clay mine in Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2020(6):121-126.HAN S H, YANG X J, YU X W, et al. Experimental study on roast leaching of scandium and titanium from a clay mine in Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 121-126. -