Application of Cyclonic-Static Microbubble Flotation Column in a Fine-grained Molybdenum Ore in Henan Province
-
摘要: 这是一篇矿物加工工程领域的论文。河南某钼矿属矽卡岩型钼矿,粒度嵌布细、泥质矿物含量高,浮选回收率一直偏低。本文通过对矿石性质、生产现状进行系统分析,指出生产中存在的主要问题。为适应选矿厂4000 t/d扩能改造需要,并协同强化微细粒钼矿回收,结合旋流-静态微泡浮选柱的结构特征与分选优势,提出了增加1台旋流-静态微泡浮选柱的改造方案。研究表明该钼矿嵌布粒度微细,-0.038 mm和-0.020 mm辉钼矿分别占75.80%和38.68%;矿石中含有大量的绿帘石、蒙脱石、绿泥石等泥质矿物,部分坑口泥质矿物含量40%以上;现有浮选工艺对微细粒级回收差,尾矿中-0.020 mm粒级钼矿损失占比在50%以上。实验室浮选实验结果表明旋流-静态微泡浮选柱对总尾矿和粗选尾矿中的钼均具有良好的浮选回收效果,精矿富集比和钼回收率均明显优于浮选机。工程应用进一步表明:旋流-静态微泡浮选柱对现有充气式浮选柱起到“兜底”的作用,扩能后钼回收率提高4个百分点以上,显著降低了微细粒钼在尾矿中损失,经济效益显著。Abstract: This is an essay in the field of mineral processing engineering. A molybdenum mine in Henan Province belongs to the skarn type molybdenum mine, which has the characteristics of extremely fine embedded particle size and high mud mineral content, and the molybdenum has suffered poor recovery. This paper systematically analyzed the ore properties and production status and analyzed the main problems existing in the production. In order to meet the needs of the 4000 t/d capacity expansion and reconstruction of the ore dressing plant, and to synergistically strengthen the recovery of fine-grained molybdenite particles, a cyclonic-static microbubble flotation column was proposed to add combined with the structural characteristics and separation advantages. The research results show that the molybdenum ore was embedded with micro-fine size, and -0.038 mm and -0.020 mm molybdenite accounted for 75.80% and 38.68%, respectively. Moreover, the ores contained a large amount of epidote, montmorillonite, chlorite and other argillaceous minerals, and the content of argillaceous minerals in some pit mouths was more than 40%. The existing flotation process has suffered poor recovery in the fine-grained particles, and the loss of molybdenum with -0.020 mm size in the tailings accounted for more than 50%. Laboratory flotation test results show that the cyclone-static microbubble flotation column had a good flotation effect on molybdenum recovery in total tailings and rougher tailings, and the concentrate enrichment ratio and molybdenum recovery rate were obviously better than flotation machine. The engineering practice further shows that the cyclone-static microbubble flotation column played a role in regaining better recovery for the existing flotation column, and the molybdenum recovery rate after the expansion was increased by more than 4 percentage points, and the loss of fine-grained molybdenite particles in tailings were significantly reduced, which achieved significant economic benefits.
-
表 1 粗选作业各产品Mo分布率变化
Table 1. Change of metal distribution rate of each product in roughing flotation
级别/mm 给矿Mo分布率/% 底流Mo分布率/% 泡沫Mo分布率/% 各级别 负累积 各级别 负累积 各级别 负累积 +0.15 1.79 100.00 2.24 100.000 0.00 100.00 -0.15+0.074 6.08 98.21 8.18 97.765 0.00 100.00 -0.074+0.043 13.27 92.13 3.78 89.585 6.69 100.00 -0.043+0.038 7.44 78.86 20.26 85.810 6.00 93.31 -0.038 71.42 71.42 65.55 65.550 87.31 87.31 合计 100.00 - 100.00 - 100.00 - 表 2 尾矿镜下粒度统计分析结果
Table 2. Statistical analysis results of tailings particle size under microscope
粒径
范围/mm颗粒
数n平均
粒径d/mmn·d/mm 近似面积
含量/%累计
含量/%-0.08+0.04 3 0.043 0.13 3.33 3.33 -0.04+0.02 19 0.025 0.48 12.28 15.61 -0.02+0.01 81 0.013 1.059 27.10 42.71 -0.01+0.001 418 0.005 2.239 57.29 100.00 平均 521 0.008 3.908 100.00 - 表 3 浮选柱与浮选机浮选实验结果
Table 3. Flotation results of flotation column and flotation machine
序号 产品名称 产率/% Mo品位/% 回收率/% A 粗精矿 1.34 1.8789 53.83 扫一精 1.46 0.3323 10.37 尾矿 97.20 0.0172 35.80 合计 100.00 0.0483 100.00 B 粗精矿 1.17 2.6369 64.83 扫一精 0.33 1.2957 8.88 尾矿 98.50 0.0127 26.29 合计 100.00 0.0476 100.00 C 粗精矿 2.13 0.2438 27.49 尾矿 97.87 0.0140 72.51 合计 100.00 0.0179 100.00 D 粗精矿 0.98 0.5944 30.99 尾矿 99.02 0.0131 69.01 合计 100.00 0.0188 100.00 A、B为粗选尾矿再选实验,C、D为最终尾矿再选实验;其中A、C为浮选机实验,B、D为旋流-静态微泡浮选柱实验。 表 4 改造前后浮选技术指标分析
Table 4. Analysis of flotation technical indexes before and after transformation
名称 入选量/t 精矿Mo
品位/%回收率/% 平均
回收率/%改造前 10月 58808 40.97 80.65 78.87 11月 66165 40.98 77.55 12月 64634 41.89 78.60 改造后 1月 67548 40.36 82.07 83.68 2月 75024 42.36 86.57 3月 68762 41.24 82.10 扩产后 6月 82939 40.15 82.9 82.90 -
[1] 李辉, 胡平, 邢海瑞, 等. 钼合金高温力学性能研究现状综述[J]. 功能材料, 2020, 51(10):10044-10054. LI H, HU P, XING H R, et al. A survey of high temperature mechanical properties of molybdenum alloys[J]. Journal of Functional Materials, 2020, 51(10):10044-10054.LI H, HU P, XING H R, et al. A survey of high temperature mechanical properties of molybdenum alloys[J]. Journal of Functional Materials, 2020, 51(10): 10044-10054. [2] 公彦兵, 沈裕军, 丁喻, 等. 辉钼矿湿法冶金研究进展[J]. 矿冶工程, 2009, 29(1):78-81. GONG Y B, SHEN Y J, DING Y, et al. Development of hydrometallurgical processes of molybdenite[J]. Mining and Metallurgical Engineering, 2009, 29(1):78-81.GONG Y B, SHEN Y J, DING Y, et al. Development of hydrometallurgical processes of molybdenite[J]. Mining and Metallurgical Engineering, 2009, 29(1): 78-81. [3] 林清泉, 吴启明, 戴智飞, 等. 微细粒辉钼矿浮选机理研究[J]. 矿冶工程, 2021, 41(3):37-41,45. LIN Q Q, WU Q M, DAI Z F, et al. Mechanism for hydrocarbon oil collectors in flotation of fine molybdenite ore[J]. Mining and Metallurgical Engineering, 2021, 41(3):37-41,45.LIN Q Q, WU Q M, DAI Z F, et al. Mechanism for hydrocarbon oil collectors in flotation of fine molybdenite ore[J]. Mining and Metallurgical Engineering, 2021, 41(3): 37-41, 45. [4] 李树磊, 曹亦俊, 廖寅飞, 等. 基于Washburn法的辉钼矿尺度效应分析及浮选响应[J]. 中国矿业大学学报, 2022, 51(1):187-195,206. LI S L, CAO Y J, LIAO Y F, et al. Scale effect analysis and flotation response of molybdenite based on Washburn method[J]. Journal of China University of Mining & Technology, 2022, 51(1):187-195,206.LI S L, CAO Y J, LIAO Y F, et al. Scale effect analysis and flotation response of molybdenite based on Washburn method[J]. Journal of China University of Mining & Technology, 2022, 51(1): 187-195, 206. [5] 梁艳男, 王海楠, 周若谦, 等. 浮选微泡调控及其作用机制的研究进展[J]. 矿产综合利用, 2022(2):158-166. LIANG Y N, WANG H N, ZHOU R Q, et al. Investigation advances on regulation and mechanism of microbubbles in flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):158-166.LIANG Y N, WANG H N, ZHOU R Q, et al. Investigation advances on regulation and mechanism of microbubbles in flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2): 158-166. [6] 曾克文, 余永富, 薛玉兰. 浮选机槽内矿浆紊流强度对氧化矿浮选的影响[J]. 矿产综合利用, 2001(2):19-22. ZENG K W, YU Y F, XUE Y L. Effect of turbulence of pulp in flotation cell on flotation of oxidized ore[J]. Multipurpose Utilization of Mineral Resources, 2001(2):19-22.ZENG K W, YU Y F, XUE Y L. Effect of turbulence of pulp in flotation cell on flotation of oxidized ore[J]. Multipurpose Utilization of Mineral Resources, 2001 (2): 19-22. [7] 苑宏倩, 韩跃新, 李艳军, 等. 齐大山选矿分厂磁选精矿剪切絮凝正浮选研究[J]. 金属矿山, 2011(4):50-53. YUAN H Q, HAN Y X, LI Y J, et al. Study on shear flocculation and flotation of magnetic separation concentrate in Qidashan iron ore[J]. Metal Mine, 2011(4):50-53.YUAN H Q, HAN Y X, LI Y J, et al. Study on shear flocculation and flotation of magnetic separation concentrate in Qidashan iron ore[J]. Metal Mine, 2011 (4): 50-53. [8] 岳双凌, 廖寅飞, 马子龙. 选择性絮凝-柱浮选回收钼精选尾矿中的微细粒辉钼矿[J]. 矿产综合利用, 2018(5):52-57. YUE S L, LIAO Y F, MA Z L. Recovering fine molybdenite from molybdenum cleaning tailings by selective flocculation-column flotation[J]. Multipurpose Utilization of Mineral Resources, 2018(5):52-57.YUE S L, LIAO Y F, MA Z L. Recovering fine molybdenite from molybdenum cleaning tailings by selective flocculation-column flotation[J]. Multipurpose Utilization of Mineral Resources, 2018(5): 52-57. [9] SAHINOGLU E, USLU T. Effect of particle size on cleaning of high-sulphur fine coal by oil agglomeration[J]. Fuel Processing Technology, 2014, 128:211-219. doi: 10.1016/j.fuproc.2014.07.015 [10] 刘清侠, 李明达, 郭蔚, 等. 微细粒疏水矿物表面微泡强化浮选的作用机理[J]. 中国矿业大学学报, 2022, 51(3):466-473. LIU Q X, LI M D, GUO W, et al. Fundamental understanding of microbubbles on fine hydrophobic mineral surface in flotation[J]. Journal of China University of Mining & Technology, 2022, 51(3):466-473.LIU Q X, LI M D, GUO W, et al. Fundamental understanding of microbubbles on fine hydrophobic mineral surface in flotation[J]. Journal of China University of Mining & Technology, 2022, 51(3): 466-473. [11] 曹亦俊, 闫小康, 王利军, 等. 微细粒浮选的微观湍流强化[J]. 矿产保护与利用, 2017(2):113-118. CAO Y J, YAN X K, WANG L J, et al. The Micro-turbulence intensification on the fineminerals floatation[J]. Conservation and Utilization of Mineral Resources, 2017(2):113-118.CAO Y J, YAN X K, WANG L J, et al. The Micro-turbulence intensification on the fineminerals floatation[J]. Conservation and Utilization of Mineral Resources, 2017(2): 113-118. [12] 刘炯天, 李小兵, 王永田, 等. 旋流-静态微泡浮选柱浮选某难选钼矿的实验研究[J]. 中南大学学报(自然科学版), 2008(2):300-306. LIU J T, LI X B, WANG Y T, et al. Experimental study on separating some molybdenum ore by using cyclonic-static micro-bubble flotation column[J]. Journal of Central South University(Science and Technology), 2008(2):300-306.LIU J T, LI X B, WANG Y T, et al. Experimental study on separating some molybdenum ore by using cyclonic-static micro-bubble flotation column[J]. Journal of Central South University(Science and Technology), 2008(2): 300-306. [13] 牛敏, 李景超, 刘磊, 等. 旋流-静态微泡浮选柱在晶质石墨浮选中的应用[J]. 中国矿业, 2020, 29(S1):361-366. NIU M, LI J C, LIU L, et al. Application cyclone static microbubble flotation column in the flotation of crystalline graphite[J]. China Mining Magazine, 2020, 29(S1):361-366.NIU M, LI J C, LIU L, et al. Application cyclone static microbubble flotation column in the flotation of crystalline graphite[J]. China Mining Magazine, 2020, 29(S1): 361-366. [14] 高秀, 马子龙, 刘长青. 矿物在旋流-静态微泡浮选柱旋流段的分布规律[J]. 矿产综合利用, 2016(1):92-96. GAO X, MA Z L, LIU C Q. Study on distribution of mineral in cyclone zone of cyclonic static micro-bubble flotation column[J]. Multipurpose Utilization of Mineral Resources, 2016(1):92-96.GAO X, MA Z L, LIU C Q. Study on distribution of mineral in cyclone zone of cyclonic static micro-bubble flotation column[J]. Multipurpose Utilization of Mineral Resources, 2016(1): 92-96. [15] 秦华江, 张海军, 何川, 等. 旋流-静态微泡浮选柱回收钼精选尾矿中钼金属[J]. 中国钼业, 2016, 40(4):6-9. QIN H J, ZHANG H J, HE C, et al. Study on the recovery of molybdenum in molybdenum cleaner tailings using cyclonic-static microbubble flotation column[J]. China Molybdenum Industry, 2016, 40(4):6-9.QIN H J, ZHANG H J, HE C, et al. Study on the recovery of molybdenum in molybdenum cleaner tailings using cyclonic-static microbubble flotation column[J]. China Molybdenum Industry, 2016, 40(4): 6-9. [16] 孙志健, 吴熙群, 李成必, 等. 高含泥矿石浮选综述[J]. 有色金属(选矿部分), 2020(1):59-63. SUN Z J, WU X Q, LI C B, et al. A summary of high contents slime ore flotation[J]. Nonferrous Metals(Mineral Processing Section), 2020(1):59-63.SUN Z J, WU X Q, LI C B, et al. A summary of high contents slime ore flotation [J]. Nonferrous Metals(Mineral Processing Section), 2020(1): 59-63. [17] 卫召, 孙伟, 张庆鹏, 等. 细粒硫化铜矿与易泥化钙镁矿物的浮选分离[J]. 有色金属工程, 2017, 7(4):64-69. WEI Z, SUN W, ZHANG Q P, et al. Flotation separation of fine copper sulfide and easy-sliming calcium-magnesium minerals[J]. Nonferrous Metals Engineering, 2017, 7(4):64-69.WEI Z, SUN W, ZHANG Q P, et al. Flotation separation of fine copper sulfide and easy-sliming calcium-magnesium minerals [J]. Nonferrous Metals Engineering, 2017, 7(4): 64-69. [18] YOON R H, LUTTRELL G H. The effect of bubble size on fine particle flotation[J]. Mineral Procesing and Extractive Metallurgy Review, 1989, 5(1-4):101-122. doi: 10.1080/08827508908952646 [19] 桂夏辉, 刘炯天, 曹亦俊, 等. 气泡发生器结构性能的研究与进展[J]. 选煤技术, 2009(2):66-70. GUI X H, LIU J T, CAO Y J, et al. Current study and development of structure and performance of bubble generator[J]. Coal Preparation Technology, 2009(2):66-70.GUI X H, LIU J T, CAO Y J, et al. Current study and development of structure and performance of bubble generator[J]. Coal Preparation Technology, 2009(2): 66-70. -