• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊评价数据库来源期刊
  • 世界期刊影响力指数(WJCI)报告
    (2020、2021科技版)收录期刊
  • SCOPUS, DOAJ, EBSCO, JST, CA数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋流-静态微泡浮选柱在河南某微细粒钼矿的应用研究

陈新 晁彦德 黄业豪 李树磊

陈新, 晁彦德, 黄业豪, 李树磊. 旋流-静态微泡浮选柱在河南某微细粒钼矿的应用研究[J]. 矿产综合利用, 2023, 44(5): 7-14. doi: 10.3969/j.issn.1000-6532.2023.05.002
引用本文: 陈新, 晁彦德, 黄业豪, 李树磊. 旋流-静态微泡浮选柱在河南某微细粒钼矿的应用研究[J]. 矿产综合利用, 2023, 44(5): 7-14. doi: 10.3969/j.issn.1000-6532.2023.05.002
Chen Xin, Chao Yande, Huang Yehao, Li Shulei. Application of Cyclonic-Static Microbubble Flotation Column in a Fine-grained Molybdenum Ore in Henan Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 7-14. doi: 10.3969/j.issn.1000-6532.2023.05.002
Citation: Chen Xin, Chao Yande, Huang Yehao, Li Shulei. Application of Cyclonic-Static Microbubble Flotation Column in a Fine-grained Molybdenum Ore in Henan Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 7-14. doi: 10.3969/j.issn.1000-6532.2023.05.002

旋流-静态微泡浮选柱在河南某微细粒钼矿的应用研究

doi: 10.3969/j.issn.1000-6532.2023.05.002
基金项目: 国家自然科学基金青年基金(51904299)
详细信息
    作者简介:

    陈新(1981-),男,工程师,主要从事选矿生产及管理方面工作

    通讯作者:

    李树磊(1988-),男,博士,副教授,主要从事微细粒矿物浮选强化研究工作

  • 中图分类号: TD952

Application of Cyclonic-Static Microbubble Flotation Column in a Fine-grained Molybdenum Ore in Henan Province

  • 摘要: 这是一篇矿物加工工程领域的论文。河南某钼矿属矽卡岩型钼矿,粒度嵌布细、泥质矿物含量高,浮选回收率一直偏低。本文通过对矿石性质、生产现状进行系统分析,指出生产中存在的主要问题。为适应选矿厂4000 t/d扩能改造需要,并协同强化微细粒钼矿回收,结合旋流-静态微泡浮选柱的结构特征与分选优势,提出了增加1台旋流-静态微泡浮选柱的改造方案。研究表明该钼矿嵌布粒度微细,-0.038 mm和-0.020 mm辉钼矿分别占75.80%和38.68%;矿石中含有大量的绿帘石、蒙脱石、绿泥石等泥质矿物,部分坑口泥质矿物含量40%以上;现有浮选工艺对微细粒级回收差,尾矿中-0.020 mm粒级钼矿损失占比在50%以上。实验室浮选实验结果表明旋流-静态微泡浮选柱对总尾矿和粗选尾矿中的钼均具有良好的浮选回收效果,精矿富集比和钼回收率均明显优于浮选机。工程应用进一步表明:旋流-静态微泡浮选柱对现有充气式浮选柱起到“兜底”的作用,扩能后钼回收率提高4个百分点以上,显著降低了微细粒钼在尾矿中损失,经济效益显著。

     

  • 图  1  改造前粗扫选作业工艺流程

    Figure  1.  Process flow of roughing and scavenging before transformation

    图  2  尾矿镜下显微照片

    Figure  2.  Microscopic micrograph of tailings

    图  3  改造后粗扫选作业工艺流程

    Figure  3.  Process flow chart of roughing and cleaning after transformation

    图  4  两台浮选柱Mo作业回收率变化

    Figure  4.  Recovery rate change of Mo for the two flotation columns

    图  5  2台浮选柱泡沫产品粒度分析结果

    Figure  5.  Particle size analysis results of the flotation columns froth

    图  6  改造前后细粒级钼损失占比变化

    Figure  6.  Fine Mo loss change before and after modification

    表  1  粗选作业各产品Mo分布率变化

    Table  1.   Change of metal distribution rate of each product in roughing flotation

    级别/mm给矿Mo分布率/%底流Mo分布率/%泡沫Mo分布率/%
    各级别负累积各级别负累积各级别负累积
    +0.151.79100.002.24100.0000.00100.00
    -0.15+0.0746.0898.218.1897.7650.00100.00
    -0.074+0.04313.2792.133.7889.5856.69100.00
    -0.043+0.0387.4478.8620.2685.8106.0093.31
    -0.03871.4271.4265.5565.55087.3187.31
    合计100.00-100.00-100.00-
    下载: 导出CSV

    表  2  尾矿镜下粒度统计分析结果

    Table  2.   Statistical analysis results of tailings particle size under microscope

    粒径
    范围/mm
    颗粒
    数n
    平均
    粒径d/mm
    n·d/mm近似面积
    含量/%
    累计
    含量/%
    -0.08+0.0430.0430.133.333.33
    -0.04+0.02190.0250.4812.2815.61
    -0.02+0.01810.0131.05927.1042.71
    -0.01+0.0014180.0052.23957.29100.00
    平均5210.0083.908100.00-
    下载: 导出CSV

    表  3  浮选柱与浮选机浮选实验结果

    Table  3.   Flotation results of flotation column and flotation machine

    序号产品名称产率/%Mo品位/%回收率/%
    A粗精矿1.341.878953.83
    扫一精1.460.332310.37
    尾矿97.200.017235.80
    合计100.000.0483100.00
    B粗精矿1.172.636964.83
    扫一精0.331.29578.88
    尾矿98.500.012726.29
    合计100.000.0476100.00
    C粗精矿2.130.243827.49
    尾矿97.870.014072.51
    合计100.000.0179100.00
    D粗精矿0.980.594430.99
    尾矿99.020.013169.01
    合计100.000.0188100.00
    A、B为粗选尾矿再选实验,C、D为最终尾矿再选实验;其中A、C为浮选机实验,B、D为旋流-静态微泡浮选柱实验。
    下载: 导出CSV

    表  4  改造前后浮选技术指标分析

    Table  4.   Analysis of flotation technical indexes before and after transformation

    名称入选量/t精矿Mo
    品位/%
    回收率/%平均
    回收率/%
    改造前10月5880840.9780.6578.87
    11月6616540.9877.55
    12月6463441.8978.60
    改造后1月6754840.3682.0783.68
    2月7502442.3686.57
    3月6876241.2482.10
    扩产后6月8293940.1582.982.90
    下载: 导出CSV
  • [1] 李辉, 胡平, 邢海瑞, 等. 钼合金高温力学性能研究现状综述[J]. 功能材料, 2020, 51(10):10044-10054. LI H, HU P, XING H R, et al. A survey of high temperature mechanical properties of molybdenum alloys[J]. Journal of Functional Materials, 2020, 51(10):10044-10054.

    LI H, HU P, XING H R, et al. A survey of high temperature mechanical properties of molybdenum alloys[J]. Journal of Functional Materials, 2020, 51(10): 10044-10054.
    [2] 公彦兵, 沈裕军, 丁喻, 等. 辉钼矿湿法冶金研究进展[J]. 矿冶工程, 2009, 29(1):78-81. GONG Y B, SHEN Y J, DING Y, et al. Development of hydrometallurgical processes of molybdenite[J]. Mining and Metallurgical Engineering, 2009, 29(1):78-81.

    GONG Y B, SHEN Y J, DING Y, et al. Development of hydrometallurgical processes of molybdenite[J]. Mining and Metallurgical Engineering, 2009, 29(1): 78-81.
    [3] 林清泉, 吴启明, 戴智飞, 等. 微细粒辉钼矿浮选机理研究[J]. 矿冶工程, 2021, 41(3):37-41,45. LIN Q Q, WU Q M, DAI Z F, et al. Mechanism for hydrocarbon oil collectors in flotation of fine molybdenite ore[J]. Mining and Metallurgical Engineering, 2021, 41(3):37-41,45.

    LIN Q Q, WU Q M, DAI Z F, et al. Mechanism for hydrocarbon oil collectors in flotation of fine molybdenite ore[J]. Mining and Metallurgical Engineering, 2021, 41(3): 37-41, 45.
    [4] 李树磊, 曹亦俊, 廖寅飞, 等. 基于Washburn法的辉钼矿尺度效应分析及浮选响应[J]. 中国矿业大学学报, 2022, 51(1):187-195,206. LI S L, CAO Y J, LIAO Y F, et al. Scale effect analysis and flotation response of molybdenite based on Washburn method[J]. Journal of China University of Mining & Technology, 2022, 51(1):187-195,206.

    LI S L, CAO Y J, LIAO Y F, et al. Scale effect analysis and flotation response of molybdenite based on Washburn method[J]. Journal of China University of Mining & Technology, 2022, 51(1): 187-195, 206.
    [5] 梁艳男, 王海楠, 周若谦, 等. 浮选微泡调控及其作用机制的研究进展[J]. 矿产综合利用, 2022(2):158-166. LIANG Y N, WANG H N, ZHOU R Q, et al. Investigation advances on regulation and mechanism of microbubbles in flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):158-166.

    LIANG Y N, WANG H N, ZHOU R Q, et al. Investigation advances on regulation and mechanism of microbubbles in flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2): 158-166.
    [6] 曾克文, 余永富, 薛玉兰. 浮选机槽内矿浆紊流强度对氧化矿浮选的影响[J]. 矿产综合利用, 2001(2):19-22. ZENG K W, YU Y F, XUE Y L. Effect of turbulence of pulp in flotation cell on flotation of oxidized ore[J]. Multipurpose Utilization of Mineral Resources, 2001(2):19-22.

    ZENG K W, YU Y F, XUE Y L. Effect of turbulence of pulp in flotation cell on flotation of oxidized ore[J]. Multipurpose Utilization of Mineral Resources, 2001 (2): 19-22.
    [7] 苑宏倩, 韩跃新, 李艳军, 等. 齐大山选矿分厂磁选精矿剪切絮凝正浮选研究[J]. 金属矿山, 2011(4):50-53. YUAN H Q, HAN Y X, LI Y J, et al. Study on shear flocculation and flotation of magnetic separation concentrate in Qidashan iron ore[J]. Metal Mine, 2011(4):50-53.

    YUAN H Q, HAN Y X, LI Y J, et al. Study on shear flocculation and flotation of magnetic separation concentrate in Qidashan iron ore[J]. Metal Mine, 2011 (4): 50-53.
    [8] 岳双凌, 廖寅飞, 马子龙. 选择性絮凝-柱浮选回收钼精选尾矿中的微细粒辉钼矿[J]. 矿产综合利用, 2018(5):52-57. YUE S L, LIAO Y F, MA Z L. Recovering fine molybdenite from molybdenum cleaning tailings by selective flocculation-column flotation[J]. Multipurpose Utilization of Mineral Resources, 2018(5):52-57.

    YUE S L, LIAO Y F, MA Z L. Recovering fine molybdenite from molybdenum cleaning tailings by selective flocculation-column flotation[J]. Multipurpose Utilization of Mineral Resources, 2018(5): 52-57.
    [9] SAHINOGLU E, USLU T. Effect of particle size on cleaning of high-sulphur fine coal by oil agglomeration[J]. Fuel Processing Technology, 2014, 128:211-219. doi: 10.1016/j.fuproc.2014.07.015
    [10] 刘清侠, 李明达, 郭蔚, 等. 微细粒疏水矿物表面微泡强化浮选的作用机理[J]. 中国矿业大学学报, 2022, 51(3):466-473. LIU Q X, LI M D, GUO W, et al. Fundamental understanding of microbubbles on fine hydrophobic mineral surface in flotation[J]. Journal of China University of Mining & Technology, 2022, 51(3):466-473.

    LIU Q X, LI M D, GUO W, et al. Fundamental understanding of microbubbles on fine hydrophobic mineral surface in flotation[J]. Journal of China University of Mining & Technology, 2022, 51(3): 466-473.
    [11] 曹亦俊, 闫小康, 王利军, 等. 微细粒浮选的微观湍流强化[J]. 矿产保护与利用, 2017(2):113-118. CAO Y J, YAN X K, WANG L J, et al. The Micro-turbulence intensification on the fineminerals floatation[J]. Conservation and Utilization of Mineral Resources, 2017(2):113-118.

    CAO Y J, YAN X K, WANG L J, et al. The Micro-turbulence intensification on the fineminerals floatation[J]. Conservation and Utilization of Mineral Resources, 2017(2): 113-118.
    [12] 刘炯天, 李小兵, 王永田, 等. 旋流-静态微泡浮选柱浮选某难选钼矿的实验研究[J]. 中南大学学报(自然科学版), 2008(2):300-306. LIU J T, LI X B, WANG Y T, et al. Experimental study on separating some molybdenum ore by using cyclonic-static micro-bubble flotation column[J]. Journal of Central South University(Science and Technology), 2008(2):300-306.

    LIU J T, LI X B, WANG Y T, et al. Experimental study on separating some molybdenum ore by using cyclonic-static micro-bubble flotation column[J]. Journal of Central South University(Science and Technology), 2008(2): 300-306.
    [13] 牛敏, 李景超, 刘磊, 等. 旋流-静态微泡浮选柱在晶质石墨浮选中的应用[J]. 中国矿业, 2020, 29(S1):361-366. NIU M, LI J C, LIU L, et al. Application cyclone static microbubble flotation column in the flotation of crystalline graphite[J]. China Mining Magazine, 2020, 29(S1):361-366.

    NIU M, LI J C, LIU L, et al. Application cyclone static microbubble flotation column in the flotation of crystalline graphite[J]. China Mining Magazine, 2020, 29(S1): 361-366.
    [14] 高秀, 马子龙, 刘长青. 矿物在旋流-静态微泡浮选柱旋流段的分布规律[J]. 矿产综合利用, 2016(1):92-96. GAO X, MA Z L, LIU C Q. Study on distribution of mineral in cyclone zone of cyclonic static micro-bubble flotation column[J]. Multipurpose Utilization of Mineral Resources, 2016(1):92-96.

    GAO X, MA Z L, LIU C Q. Study on distribution of mineral in cyclone zone of cyclonic static micro-bubble flotation column[J]. Multipurpose Utilization of Mineral Resources, 2016(1): 92-96.
    [15] 秦华江, 张海军, 何川, 等. 旋流-静态微泡浮选柱回收钼精选尾矿中钼金属[J]. 中国钼业, 2016, 40(4):6-9. QIN H J, ZHANG H J, HE C, et al. Study on the recovery of molybdenum in molybdenum cleaner tailings using cyclonic-static microbubble flotation column[J]. China Molybdenum Industry, 2016, 40(4):6-9.

    QIN H J, ZHANG H J, HE C, et al. Study on the recovery of molybdenum in molybdenum cleaner tailings using cyclonic-static microbubble flotation column[J]. China Molybdenum Industry, 2016, 40(4): 6-9.
    [16] 孙志健, 吴熙群, 李成必, 等. 高含泥矿石浮选综述[J]. 有色金属(选矿部分), 2020(1):59-63. SUN Z J, WU X Q, LI C B, et al. A summary of high contents slime ore flotation[J]. Nonferrous Metals(Mineral Processing Section), 2020(1):59-63.

    SUN Z J, WU X Q, LI C B, et al. A summary of high contents slime ore flotation [J]. Nonferrous Metals(Mineral Processing Section), 2020(1): 59-63.
    [17] 卫召, 孙伟, 张庆鹏, 等. 细粒硫化铜矿与易泥化钙镁矿物的浮选分离[J]. 有色金属工程, 2017, 7(4):64-69. WEI Z, SUN W, ZHANG Q P, et al. Flotation separation of fine copper sulfide and easy-sliming calcium-magnesium minerals[J]. Nonferrous Metals Engineering, 2017, 7(4):64-69.

    WEI Z, SUN W, ZHANG Q P, et al. Flotation separation of fine copper sulfide and easy-sliming calcium-magnesium minerals [J]. Nonferrous Metals Engineering, 2017, 7(4): 64-69.
    [18] YOON R H, LUTTRELL G H. The effect of bubble size on fine particle flotation[J]. Mineral Procesing and Extractive Metallurgy Review, 1989, 5(1-4):101-122. doi: 10.1080/08827508908952646
    [19] 桂夏辉, 刘炯天, 曹亦俊, 等. 气泡发生器结构性能的研究与进展[J]. 选煤技术, 2009(2):66-70. GUI X H, LIU J T, CAO Y J, et al. Current study and development of structure and performance of bubble generator[J]. Coal Preparation Technology, 2009(2):66-70.

    GUI X H, LIU J T, CAO Y J, et al. Current study and development of structure and performance of bubble generator[J]. Coal Preparation Technology, 2009(2): 66-70.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  17
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-03

目录

    /

    返回文章
    返回