[1] |
殷德洪, 斯提芬·路易多尔德, 海尔穆特·安特雷科维兹齐. 全球锂的资源、应用及其再生利用[J]. 世界有色金属, 2011(8):25-29. YIN D H,S LUIDOLD,H ANTREKOWITSCH. Global lithium resources, applications and recycling[J]. World Nonferrous Metals, 2011(8):25-29.YIN D H, S LUIDOLD, H ANTREKOWITSCH.Global lithium resources, applications and recycling[J]. World Nonferrous Metals, 2011(8):25-29.
|
[2] |
杜康, 王军强, 曹海龙, 等. 航空航天用铝锂合金研究进展及发展趋势[J]. 铝加工, 2022(2):3-9. DU K, WANG J Q, CAO H L, et al. Research progress and development trend of Al-Li alloys for aerospace applications[J]. Aluminum Fabrication, 2022(2):3-9.DU K, WANG J Q, CAO H L, et al. Research progress and development trend of Al-Li alloys for aerospace applications[J]. Aluminum Fabrication, 2022(2): 3-9.
|
[3] |
郑笑芳, 彭晓东, 谢卫东, 等. 锂及其含锂合金的研究与应用现状[J]. 兵器材料科学与工程, 2011, 34(4):94-98. ZHENG X F, PENG X D, XIE W D, et al. Research and application status of lithium and its alloys[J]. Ordnance Material Science and Engineering, 2011, 34(4):94-98.ZHENG X F, PENG X D, XIE W D, et al. Research and application status of lithium and its alloys[J]. Ordnance Material Science and Engineering, 2011, 34(4): 94-98.
|
[4] |
Mansfield D K, Strachan J D, Bell M G, et al. Enhanced performance of deuterium-tritium-fueled super shots using extensive lithium conditioning in the Tokamak Fusion Test Reactor[J]. Physics of Plasmas, 1995, 2(11):4252-4256. doi: 10.1063/1.871050
|
[5] |
程仁举, 李成秀, 刘星, 等. 川西某伟晶岩型锂辉石矿浮选实验研究[J]. 矿产综合利用, 2020(6):148-152. CHENG R J, LI C X, LIU X, et al. Experimental research on the flotation of a pegmatite type spodumene ore in Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2020(6):148-152. doi: 10.3969/j.issn.1000-6532.2020.06.025CHENG R J, LI C X, LIU X, et al. Experimental research on the flotation of a pegmatite type spodumene ore in Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 148-152. doi: 10.3969/j.issn.1000-6532.2020.06.025
|
[6] |
徐大鹏, 肖文军, 彭家建, 等. 锂催化酮的硅氢加成反应[J]. 杭州师范大学学报(自然科学版), 2016, 15(4):337-341. XU D P, XIAO W J, PENG J J, et al. Hydrosilylation reaction of ketone catalyzed with lithium[J]. Journal of Hangzhou Normal University (Natural Sciences Edition), 2016, 15(4):337-341.XU D P, XIAO W J, PENG J J, et al. Hydrosilylation reaction of ketone catalyzed with lithium[J]. Journal of Hangzhou Normal University (Natural Sciences Edition), 2016, 15(4): 337-341.
|
[7] |
WAN Y, DU Z B, ZHANG S, et al. Electro-optic properties of indium/erbium-codoped lithium niobate crystal for integrated optics[J]. Optics & Laser Technology, 2017.
|
[8] |
杨俊峰, 潘寻. “十四五”中国锂动力电池产业关键资源供需分析[J]. 有色金属(冶炼部分), 2021(6):37-41+52. YANG J F, PAN X. Analysis on supply and demand of key resources of lithium power battery industry in China during the 14th five-year plan period[J]. Nonferrous Metals(Extractive Metallurgy), 2021(6):37-41+52.YANG J F, PAN X. Analysis on supply and demand of key resources of lithium power battery industry in China during the 14th five-year plan period[J]. Nonferrous Metals(Extractive Metallurgy), 2021(6): 37-41+52.
|
[9] |
袁中直, 刘金成, 吕正中, 等. 金属锂原电池技术进展与未来[J]. 电源技术, 2019, 43(5):735-738. YUAN Z Z, LIU J C, LV Z Z, et al. Technical progress and future of lithium primary batteries[J]. Chinese Journal of Power Sources, 2019, 43(5):735-738.YUAN Z Z, LIU J C, LV Z Z, et al. Technical progress and future of lithium primary batteries[J]. Chinese Journal of Power Sources, 2019, 43(5): 735-738.
|
[10] |
李波, 张莉莉, 洪秋阳, 等. 废弃锂电池电极材料中有价金属的赋存状态[J]. 矿产综合利用, 2022(1):200-204. LI B, ZHANG L L, HONG Q Y, et al. Study on the occurrence state of valuable metals in waste lithium battery electrode material[J]. Multipurpose Utilization of Mineral Resources, 2022(1):200-204.LI B, ZHANG L L, HONG Q Y, et al. Study on the occurrence state of valuable metals in waste lithium battery electrode material[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 200-204.
|
[11] |
许志琴, 王汝成, 赵中宝, 等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6):1091-1106. XU Z Q, WANG R C, ZHAO Z B, et al. On the structural backgrounds of the large-scale "hard-rock type" lithium ore belts in China[J]. Acta Geologica Sinica, 2018, 92(6):1091-1106.XU Z Q, WANG R C, ZHAO Z B, et al. On the structural backgrounds of the large-scale "hard-rock type" lithium ore belts in China[J]. Acta Geologica Sinica, 2018, 92(6): 1091-1106.
|
[12] |
孙传尧. 硅酸盐矿物浮选原理[M]. 北京: 科学出版社, 2001.SUN C Y. Principle of silicate mineral flotation[M].Beijing:Science Press, 2001.
|
[13] |
吴西顺, 王登红, 黄文斌, 等. 全球锂矿及伴生铍铌钽的采选冶技术发展趋势[J]. 矿产综合利用, 2020(1):1-9. WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2020(1):1-9.WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 1-9.
|
[14] |
徐正震, 梁精龙, 李慧, 等. 含锂资源中锂的提取研究现状及展望[J]. 矿产综合利用, 2021(5):32-37. XU Z Z, LIANG J L, LI H, et al. Research status and prospects of Lithium Extraction from Lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5):32-37.XU Z Z, LIANG J L, LI H, et al. Research status and prospects of Lithium Extraction from Lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 32-37.
|
[15] |
李成秀, 程仁举, 刘星. 我国锂辉石矿选矿技术研究现状及展望[J]. 矿产综合利用, 2021(5):1-8. Li C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8.Li C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 1-8.
|
[16] |
陈超, 张裕书, 张少翔, 等. 川西九龙地区低品位锂辉石浮选实验研究[J]. 矿产综合利用, 2019(4):55-58+156. CHEN C, ZHANG Y S, ZHANG S X, et al. Flotation test of low-grade spodumene in the Jiulong Area of West Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2019(4):55-58+156.CHEN C, ZHANG Y S, ZHANG S X, et al. Flotation test of low-grade spodumene in the Jiulong Area of West Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 55-58+156.
|
[17] |
郑海涛, 王毓华, 赵悦豪, 等. NaOH和机械搅拌对锂辉石表面及浮选行为的影响[J]. 有色金属工程, 2019, 9(6):61-68. ZHENG H T, WANG Y H, ZHAO Y H, et al. Influence of NaOH and mechanical agitation on the surface and flotation behavior of spodumene[J]. Nonferrous Metals Engineering, 2019, 9(6):61-68.ZHENG H T, WANG Y H, ZHAO Y H, et al. Influence of NaOH and mechanical agitation on the surface and flotation behavior of spodumene[J]. Nonferrous Metals Engineering, 2019, 9(6): 61-68.
|
[18] |
孙志健, 于洋. 某含腐锂辉石的难选锂辉石矿选矿实验研究[J]. 有色金属工程, 2021(11):29-33. SUN Z J, YU Y. Processing research on a refractory spodumene ore containing cymatolite[J]. Nonferrous Metals Engineering, 2021(11):29-33.SUN Z J, YU Y. Processing research on a refractory spodumene ore containing cymatolite[J]. Nonferrous Metals Engineering, 2021(11): 29-33.
|
[19] |
吕永信. 锂辉石—绿柱石浮选分离新方法—污染离子Ca2+选择性解吸分离法[J]. 矿产综合利用, 1980(1):8-16. LV Y X. A new flotation separation method of spodumene and beryl-selective desorption separation of contaminated ion Ca2+[J]. Multipurpose Utilization of Mineral Resources, 1980(1):8-16.LV Y X. A new flotation separation method of spodumene and beryl--selective desorption separation of contaminated ion Ca2+[J]. Multipurpose Utilization of Mineral Resources, 1980(1): 8-16.
|
[20] |
赵清平, 蓝卓越, 童雄. 铜离子对闪锌矿、黄铁矿浮选的选择性活化机理研究[J]. 矿产综合利用, 2021(3):27-38. ZHAO Q P, LAN Z Y, TONG X. Activation mechanism of selective flotation of sphalerite and pyrite by copper[J]. Multipurpose Utilization of Mineral Resources, 2021(3):27-38.ZHAO Q P, LAN Z Y, TONG X. Activation mechanism of selective flotation of sphalerite and pyrite by copper[J]. Multipurpose Utilization of Mineral Resources, 2021 (3): 27-38.
|
[21] |
国务院. 国务院关于印发2030年前碳达峰行动方案的通知[J]. 中国钢铁业, 2021(10):11-20. The State Council. Circular of the State Council on the issuance of an action plan to peak carbon emissions by 2030[J]. China Steel, 2021(10):11-20. doi: 10.3969/j.issn.1672-5115.2021.10.003The State Council. Circular of the State Council on the issuance of an action plan to peak carbon emissions by 2030[J]. China Steel, 2021(10): 11-20. doi: 10.3969/j.issn.1672-5115.2021.10.003
|
[22] |
吴西顺, 王登红, 杨添天, 等. 碳中和目标下的锂矿产业创新及颠覆性技术[J]. 矿产综合利用, 2022(2):1-8. WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):1-8.WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2): 1-8.
|
[23] |
孙传尧, 印万忠. 关于硅酸盐矿物的可浮性与其晶体结构及表面特性关系的研究[J]. 矿冶, 1998(3):23-29+38. SUN C Y, YIN W Z. Study on the relationship between floatability, crystal structure and surface characteristics of silicate minerals[J]. Mining and Metallurgy, 1998(3):23-29+38.SUN C Y, YIN W Z. Study on the relationship between floatability, crystal structure and surface characteristics of silicate minerals[J]. Mining and Metallurgy, 1998(3): 23-29+38.
|
[24] |
徐龙华, 田佳, 董发勤, 等. 油酸钠浮选锂辉石的表面晶体化学及各向异性[J]. 中国有色金属学报, 2016, 26(10):2214-2221. XU L H, TIAN J, DONG F Q, et al. Surface crystal chemistry and anisotropy of spodumene flotation with sodium oleate[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10):2214-2221.XU L H, TIAN J, DONG F Q, et al. Surface crystal chemistry and anisotropy of spodumene flotation with sodium oleate[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10): 2214-2221.
|
[25] |
雷祖伟,钟宏. 含铷、铯锂云母矿的复合盐焙烧-浸出性能及机理[J]. 矿产综合利用, 2019(3):152-158. LEI Z W,ZHONG H. Composite salt roasting - leaching performance and mechanism of lepidolite containing rubidium and cesium[J]. Multipurpose Utilization of Mineral Resources, 2019(3):152-158.LEI Z W, ZHONG H. Composite salt roasting - leaching performance and mechanism of lepidolite containing rubidium and cesium[J]. Multipurpose Utilization of Mineral Resources, 2019(3):152-158.
|
[26] |
周乐光. 矿石学基础[M]. 北京: 冶金工业出版社, 2007.ZHOU L G. Fundamentals of ore science [M]. Beijing: Metallurgical Industry Press, 2007.
|
[27] |
印万忠, 孙传尧. 硅酸盐矿物表面特性的X射线光电子能谱分析[J]. 东北大学学报:自然科学版, 2002, 23(2):156-159. YIN W Z, SUN C Y. X-ray Photoelectron spectrometric analysis on surface property of silicate minerals[J]. Journal of Northeastern University (Natural Science), 2002, 23(2):156-159.YIN W Z, SUN C Y. X-ray Photoelectron spectrometric analysis on surface property of silicate minerals[J]. Journal of Northeastern University (Natural Science), 2002, 23(2): 156-159.
|
[28] |
Zhu G, Wang X, Li E, et al. Wetting characteristics of spodumene surfaces as influenced by collector adsorption[J]. Minerals Engineering, 2019, 130:117-128. doi: 10.1016/j.mineng.2018.10.010
|
[29] |
Moon K S, Fuerstenau D W. Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO 3 ] 2 ) from other aluminosilicates[J]. International Journal of Mineral Processing, 2003, 72(1):11-24.
|
[30] |
Zhu G, Wang Y, Liu X, et al. The cleavage and surface properties of wet and dry ground spodumene and their flotation behavior[J]. Applied Surface Science, 2015, 357:333-339. doi: 10.1016/j.apsusc.2015.08.257
|
[31] |
周贺鹏. 微细粒锂辉石聚团浮选特性及矿物表面反应机理[D]. 徐州: 中国矿业大学, 2020.ZHOU H P. Flotation characteristics of microfine-grained lithium pyroxene aggregates and mineral surface reaction mechanism[D]. Xuzhou: China University of Mining and Technology, 2020.
|
[32] |
谢瑞琦, 朱一民, 刘杰, 等. 基于密度泛函理论的锂辉石晶体结构及(110)面表面化学基因特性研究[J]. 金属矿山, 2020(6):68-74. XIE R Q, ZHU Y M, LIU J, et al. The First principle calculation of spodumene electronic structure and surface chemistry features of spodumene(110)surface[J]. Metal Mine, 2020(6):68-74.XIE R Q, ZHU Y M, LIU J, et al. The First principle calculation of spodumene electronic structure and surface chemistry features of spodumene(110)surface[J]. Metal Mine, 2020(6): 68-74.
|
[33] |
邱鸿鑫, 陈浙锐, 王光辉. 水分子在伊利石表面的吸附作用机理分析[J]. 矿产综合利用, 2020, 223(3):197-202+196. QIU H X, CHEN Z R, WANG G H. Analysis of adsorption mechanism of water molecules on illite surface[J]. Multipurpose Utilization of Mineral Resources, 2020, 223(3):197-202+196.QIU H X, CHEN Z R, WANG G H. Analysis of adsorption mechanism of water molecules on illite surface[J]. Multipurpose Utilization of Mineral Resources, 2020, 223(3): 197-202+196.
|
[34] |
杨飞, 房晓红, 曾凡桂, 等. 高岭石表面吸附铅和镉的模拟计算[J]. 矿产综合利用, 2020, 225(5):196-202+100. YANG F, FANG X H, ZENG F G, et al. Simulation calculation of adsorption of lead and cadmium on kaolinite surface[J]. Multipurpose Utilization of Mineral Resources, 2020, 225(5):196-202+100. doi: 10.3969/j.issn.1000-6532.2020.05.031YANG F , FANG X H, ZENG F G, et al. Simulation calculation of adsorption of lead and cadmium on kaolinite surface[J]. Multipurpose Utilization of Mineral Resources, 2020, 225(5): 196-202+100. doi: 10.3969/j.issn.1000-6532.2020.05.031
|
[35] |
王云飞, 李宏亮, 董宪姝, 等. 伊利石对煤泥水过滤机制的影响研究[J]. 矿产综合利用, 2020, 224(4): 202-208.WANG Y F, LI H L, DONG X S, et al. Study on effect of illite on the filtration mechanism of coal slime water[J]. Multipurpose Utilization of Mineral Resources2020, No. 224(4): 202-208.
|
[36] |
朱建光. 浮选药剂[M]. 北京: 冶金工业出版社, 1993.ZHU J G. Flotation reagents[M]. Metallurgical Industry Press, 1993.
|
[37] |
Jm A, Lxa B, Dwa B , et al. The activation mechanism of metal ions on spodumene flotation from the perspective of in situ ATR-FTIR and ToF-SIMS[J]. Minerals Engineering, 182.
|
[38] |
Yu F S, Wang Y H, Wang J M, et al. First-principle investigation on mechanism of Ca ion activating flotation of spodumene[J]. Rare Metals, 2014, 33(3):358-362. doi: 10.1007/s12598-014-0304-5
|
[39] |
XIE R Q, ZHU Y M, LIU J, et al. Flotation behavior and mechanism of α-bromododecanoic acid as collector on the flotation separation of spodumene from feldspar and quartz[J]. Journal of Molecular Liquids, 2021(336):1-7.
|
[40] |
石海兰, 朱文龙. Fe3+对锂辉石浮选的影响及机理研究[J]. 稀有金属与硬质合金, 2015, 43(4):5-9. SHI H L, ZHU W L. Study on influence of Fe3+ on spodumene flotation and its mechanism[J]. Rare Metals and Cemented Carbides, 2015, 43(4):5-9.SHI H L, ZHU W L. Study on influence of Fe3+ on spodumene flotation and its mechanism[J]. Rare Metals and Cemented Carbides, 2015, 43(4): 5-9.
|
[41] |
于福顺, 孙永峰, 蒋曼, 等. 金属阳离子在锂辉石浮选中的活化行为及作用机理[J]. 中国有色金属学报, 2021, 31(1):203-210. YU F S, SUN Y F, JIANG M, et al. Activation behavior and mechanism of metallic cations in spodumene flotation[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):203-210.YU F S, SUN Y F, JIANG M, et al. Activation behavior and mechanism of metallic cations in spodumene flotation[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1): 203-210.
|
[42] |
RAI B, SATHISH P, TANWAR J, et al. A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals[J]. Journal of Colloid and Interface Science, 2011, 362(2):510-516. doi: 10.1016/j.jcis.2011.06.069
|
[43] |
Han H, Hu Y, Sun W, et al. Novel catalysis mechanisms of benzohydroxamic acid adsorption by lead ions and changes in the surface of scheelite particles[J]. Minerals Engineering, 2018, 119:11-22. doi: 10.1016/j.mineng.2018.01.005
|
[44] |
Tong, Yue, Haisheng, et al. New insights into the role of Pb-BHA complexes in the flotation of tungsten minerals[J]. JOM, 2017, 69(11):2345-2351. doi: 10.1007/s11837-017-2531-3
|
[45] |
Tian M, Gao Z, Khoso S A , et al. Understanding the activation mechanism of Pb2+ ion in benzohydroxamic acid flotation of spodumene: Experimental findings and DFT simulations-ScienceDirect[J]. Minerals Engineering, 143: 106006-106006.
|
[46] |
邢其毅、裴伟伟、徐瑞秋, 等. 基础有机化学[M]. 北京: 北京大学出版社, 2017.XING Q Y, PEI W W, XU R Q, et al. Basic organic chemistry[M]. Beijing: Peking University Press, 2017.
|
[47] |
XIE R Q, ZHU Y M, LIU J, et al. The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz[J]. Separation and Purification Technology, 2021, 264(4):1-7.
|
[48] |
呼振峰, 孙传尧. 铁介质磨矿对锂辉石和绿柱石浮选影响的分子模拟计算研究[J]. 有色金属(选矿部分), 2016(6):88-94. HU Z F, SUN C Y. A molecular simulation computational study on the effect of iron media grinding on the flotation of lithium pyroxene and beryl[J]. Nonferrous Metals (Mineral Processing Section), 2016(6):88-94.HU Z F, SUN C Y. A molecular simulation computational study on the effect of iron media grinding on the flotation of lithium pyroxene and beryl[J]. Nonferrous Metals (Mineral Processing Section), 2016(6): 88-94.
|
[49] |
Wang Y, Zhu G, Zhang L, et al. Surface dissolution of spodumene and its role in the flotation concentration of a spodumene ore[J]. Minerals Engineering, 2018, 125:120-125. doi: 10.1016/j.mineng.2018.06.002
|
[50] |
WANG Y H, YU F S. Effects of metallic ions on the flotation of spodumene and beryl[J]. Journal of China University of Mining and Technology, 2007, 17(1):35-39. doi: 10.1016/S1006-1266(07)60008-X
|