Study on Water Damage Resistance of Red Mud Mineral Powder Asphalt Mixture
-
摘要: 为了解决制铝工业中排放的赤泥废弃料难题,为了探究赤泥矿粉替代量对沥青混合料抗水损坏性能的影响,提高废弃物资源的再利用率,采用“干法改性”方案,利用赤泥等质量代替沥青混合料中的石灰岩矿粉制成赤泥沥青胶浆和赤泥沥青混合料,通过赤泥沥青胶浆的吸持性能实验和赤泥沥青混合料的浸水马歇尔实验、冻融循环劈裂实验、浸水车辙实验来测试不同替代量赤泥沥青胶浆的粘附性能和赤泥沥青混合料的抗水损坏性能。结果表明:赤泥替代沥青混合料中的石灰岩矿粉能有效地改善沥青胶浆的粘附性能和沥青混合料的抗水损坏性能。而且通过对赤泥沥青胶浆粘附性能和沥青混合料抗水损坏的机理分析 揭示了赤泥沥青混合料抗水损坏性能的原因,得出赤泥替代量为50%时沥青混合料性能较佳的结论。Abstract: In order to solve the problem of red mud waste discharged in aluminum industry, to improve the reuse rate of waste resources, and to improve the corrosion resistance of asphalt mixture, the "dry modification" method was used to make red mud asphalt mortar and red mud asphalt mixture by using the same amount of red mud to replace the limestone powder in asphalt mixture. The red mud asphalt mortar absorption performance test and red mud asphalt mixture immersion Marshall test, freeze-thaw cycle split test, immersion rutting test were carried out to measure the adhesion performance of different replacement amount of red mud asphalt mortar and the water damage resistance performance of red mud asphalt mixture. The results showed that red mud can effectively improve the adhesion and water damage resistance of asphalt mixture. In addition, through the analysis of the adhesion performance of red mud asphalt mortar and the mechanism of water damage resistance of asphalt mixture, the reason of water damage resistance of red mud asphalt mixture was revealed, and the conclusion that the performance of asphalt mixture is the best when the replacement amount of red mud is 50% was obtained.
-
表 1 赤泥的主要化学成分/%
Table 1. Main chemical composition of red mud
Al2O3 SiO2 Fe2O3 TiO2 CaO MgO 其他 72.27 14.38 5.19 2.13 1.69 0.97 3.37 表 2 石灰岩的主要化学成分/%
Table 2. Main chemical constituent of limestone
Al2O3 SiO2 Fe2O3 TiO2 CaO MgO 其他 33.86 16.32 1.23 2.22 37.81 6.52 2.04 表 3 石灰岩矿粉技术指标检测结果
Table 3. Test results of technical indexes of limestone powder
各项技术指标 规范要求 实验检测结果 实验方法 含水量,不大于,% 1 0.18 T0103烘干法 表观密度,不小于,t/m3 2.50 2.685 T 0352-2000 粒度范围<0.075 mm,% 75~100 86.7 T 0351-2000 加热安定性 实测记录 与加热前矿粉颜色一致 T 0355-2000 表 4 AC-13沥青混合料级配设计
Table 4. AC-13 Asphalt Mixture Gradation Design
方孔筛/mm 通过的质量百分数/% 合成级配 级配上限 级配下限 目标级配 16 100 100 100 100 13.2 96.7 100 90 95 9.5 69.8 85 68 70.5 4.75 40.9 68 38 40.5 2.36 30 50 24 30.5 1.18 20.8 38 15 20.5 0.6 15.4 28 10 15 0.3 12.2 20 7 12 0.15 9.8 15 5 8.5 0.075 6.5 8 4 6 表 5 不同赤泥矿粉掺量下沥青胶浆吸持量的变化情况
Table 5. Change of holding capacity of asphalt mortar with different red mud content
赤泥矿粉掺量/% 140 ℃的吸持量/% 160 ℃的吸持量/% 170 ℃的吸持量/% 0 61 49 31 25 73 56 39 50 85 69 44 75 91 75 49 100 95 80 51 表 6 赤泥矿粉沥青混合料的浸水马歇尔稳定度实验结果
Table 6. Test results of Marshall stability of red mud asphalt mixture immersed in water
赤泥矿粉掺量/% 未浸水稳定度/kN 浸水48 h后稳定度/kN 浸水残留稳定度/% 0 7.32 5.12 69.95 25 10.56 8.75 82.86 50 13.69 12.65 92.40 75 14.98 14.06 93.85 100 15.53 14.75 94.97 表 7 赤泥矿粉沥青混合料的冻融循环劈裂实验结果
Table 7. Test results of freeze-thaw cyclic splitting of red mud asphalt mixture
赤泥矿粉掺量/% 未冻融前劈裂抗拉强度RT1/MPa 冻融后的劈裂抗拉强度RT2/MPa 冻融劈裂抗拉强度比TSR/% 0 0.8125 0.5267 64.82 25 1.3845 0.9851 71.15 50 1.6871 1.4267 84.57 75 1.6999 1.4446 84.98 100 1.7109 1.4512 84.82 表 8 赤泥矿粉沥青混合料的浸水车辙实验结果
Table 8. Rutting test results of red mud mineral powder asphalt mixture
赤泥矿粉掺量/% 45 min时的位移/mm 60 min时的位移/mm 动稳定度/(次· mm-1) 0 3.896 4.324 2283 25 3.154 3.562 2984 50 2.652 2.841 3801 75 2.661 3.247 3654 100 2.559 3.004 3691 -
[1] 朱晓波, 李望, 管学茂. 赤泥综合利用研究现状及分析[J]. 中国金, 2016(1):7-10.ZHU X B, LI W, GUAN X M. Research status and analysis of comprehensive utilization of red mud[J]. China Gold, 2016(1):7-10. [2] 李建伟, 马炎, 马挺, 等. 赤泥制备免烧砖的研究现状及技术要点探讨[J]. 矿产综合利用, 2019(3):7-10. doi: 10.3969/j.issn.1000-6532.2019.03.002LI J W, MA Y, MA T, et al. Research status and technical points of preparation of unburned brick by the red mud[J]. Multipurpose Utilization of Mineral Resources, 2019(3):7-10. doi: 10.3969/j.issn.1000-6532.2019.03.002 [3] 郭庆, 陈书文, 张军红, 等. 微波强化赤泥制备Fe-Al基絮凝剂工艺研究[J]. 矿产综合利用, 2019(4):117-121. doi: 10.3969/j.issn.1000-6532.2019.04.025GUO Q, CHEN S W, ZHANG J H, et al. Study on preparation of Fe/Al-base flocculant from red mud by microwave[J]. Multipurpose Utilization of Mineral Resources, 2019(4):117-121. doi: 10.3969/j.issn.1000-6532.2019.04.025 [4] 沈金安. 解决高速公路沥青路面水损害早期损坏的技术路径[J]. 公路, 2000(5):71. doi: 10.3969/j.issn.0451-0712.2000.05.022SHEN J A. Technical Path to Solve the Early Damage of Asphalt Pavement Water Damage[J]. Highway, 2000(5):71. doi: 10.3969/j.issn.0451-0712.2000.05.022 [5] 陈瑞峰. 循环荷载作用下赤泥改良黄土的动力特性研究[D]. 太原: 太原理工大学, 2018.CHEN R F. Study on dynamic characteristics of red mud modified loess under cyclic loading [D]. Taiyuan: Taiyuan University of Technology, 2018. [6] 曾梦澜, 赵宇, 潘浩志, 等. 欧洲岩沥青改性沥青结合料使用性能试验研究[J]. 湖南大学学报(自然科版), 2016(5): 125-130.18037-18042.ZENG M L, ZHAO Y, PAN H Z, et al. Experimental study on service performance of European rock asphalt modified asphalt binder[J]. Journal of Hunan University (Natural Science Edition), 2016(5): 125-130. 18037-18042. [7] 孙璐, 辛宪涛, 王鸿遥, 等. 多维数多尺度纳米材料改性沥青的微观机理[J]. 硅酸盐学报, 2012(10):1437-1447.SUN L, XIN X T, WANG H Y, et al. Micromechanism of asphalt modified by multidimensional and multiscale nanomaterials[J]. Journal of the Chinese Ceramic Society, 2012(10):1437-1447. [8] JTJ052-2000, 公路工程沥青及沥青混合料试验规程[S]. 北京: 人民交通出版社, 2000.JTJ052-2000, Test code for asphalt and asphalt mixture in highway engineering [S]. Beijing: People's Communications Press, 2000. [9] 公路工程沥青及沥青混合料试验规程JTGE20-2011[S]. 北京: 人民交通出版社, 2011.Test specification for asphalt and asphalt mixture in highway engineering [S]. Beijing: People's Communications Press, 2011. [10] 薛小刚. 沥青混合料级配优化及配合比设计方法研究[D]. 西安: 长安大学, 2005.XUE X G. Study on optimization of asphalt mixture grading and mixture proportion design method [D]. Xi’an: Chang 'an University, 2005. [11] 覃峰. 锰渣矿粉沥青混合料抗腐性能研究[J]. 新型建筑材料, 2012(10):56-58.QIN F. Research on anti-corrosion property of manganese slag and asphalt powder mixture[J]. New Building Materials, 2012(10):56-58. [12] 孙雅珍, 侯艳妮, 王金昌, 等. 橡胶沥青应力吸收层抗疲劳作用机理研究[J]. 广西大学学报(自然科学版), 2020, 45(1):10-16.SUN Y Z, HOU Y N, WANG J C, et al. Study on fatigue resistance mechanism of rubber asphalt stress absorbing coating[J]. Journal of Guangxi University (Natural Science Edition), 2020, 45(1):10-16. -