Extraction of Vanadium from Vanadium Titanomagnetite Concentrates by Leaching Process with Titanium White Waste Acid
-
摘要: 为了提高钒钛铁精矿中V2O5的综合利用率,采用正交实验法,对其进行了钛白废酸直接浸出和焙烧-浸出实验。直接浸出实验结果表明,对V2O5浸出率影响最大的因素是液固比,影响最小的是废酸浓度;在浸出温度为90℃,浸出时间90 min,液固比为5和废酸浓度为20%时,钒钛铁精矿中V2O5的浸出率较高,其值为71.05%。焙烧-浸出实验结果表明,对钒浸出率影响程度由大到小分别是焙烧温度、碳酸钾配比、碳酸钠配比和焙烧时间;在焙烧温度为1000℃,焙烧时间1 h,碳酸钠配比为5%和碳酸钾配比为10%时,V2O5的浸出率可达84.48%。Abstract: In order to improve the comprehensive utilization rate of V2O5 form vanadium titanomagnetite concentrates, the direct leaching and the roasting-leaching tests were carried out using titanium white waste acid byorthogonal experiment method. The results of direct leaching experiment show that the liquid-solid ratio is the most important factor affecting the leaching rate of V2O5, and the concentration of titanium white waste acid is the least. The 71.05% vanadium can be leached under the experimental condition of 20% of titanium white waste acid, 90℃ for 90 min with a liquid-to-solid ratio of 5. The results of roasting-leaching experiment show that the effects of roasting temperature, K2CO3 ratio, Na2CO3 ratio and roasting time on the leaching rate of V2O5 are from large to small. When the conditions of roasting time of 2 h, roasting temperature of 1000℃, Na2CO3 ratio of 10%, and K2CO3 ratio of 10%, and the leaching rate of V2O5 can reach 84.48%.
-
表 1 钒钛铁精矿的化学成分/%
Table 1. Chemical composition of vanadium titanomagnetite concentrates
TFe TiO2 V2O5 Cr2O3 MgO CaO Al2O3 SiO2 MnO 49.96 13.96 0.87 0.45 1.12 1.04 3.00 7.36 0.45 表 2 正交实验因素水平
Table 2. Factors and levels of orthogonal test
水平 因素 浸出温度/℃ 浸出时间/min 液固比 废酸浓度/% 1 30 30 3 20 2 60 60 5 10 3 90 90 7 5 表 3 正交实验结果与分析
Table 3. L9(34) orthogonal experimental results and statistical analysis
序号 浸出
温度/℃浸出
时间/min液固比 废酸
浓度/%浸出
率/%1 30 30 3 20 25.89 2 30 60 5 10 46.77 3 30 90 7 5 58.35 4 60 30 5 5 58.14 5 60 60 7 20 60.30 6 60 90 3 10 45.69 7 90 30 7 10 47.08 8 90 60 3 5 20.74 9 90 90 5 20 71.05 K1 43.67 43.71 30.77 52.41 K2 54.71 42.60 58.65 46.51 K3 46.29 58.36 55.24 45.74 R 11.04 15.76 27.88 6.67 较优方案 60 90 5 20 表 4 正交实验因素水平
Table 4. Factors and levels of orthogonal test
水平 因素 焙烧温度/℃ 焙烧时间/min 碳酸钠配比/% 碳酸钾配比/% 1 800 60 0 0 2 1000 120 5 5 3 1200 180 10 10 表 5 正交实验结果与分析
Table 5. Orthogonal experimental results and statistical analysis
序号 焙烧温度/℃ 焙烧时间/h 碳酸钠配比/% 碳酸钾配比/% 浸出率/% 1 800 1 0 0 17.58 2 800 2 5 5 62.99 3 800 3 10 10 77.94 4 1000 1 5 10 84.48 5 1000 2 10 0 82.41 6 1000 3 0 5 73.23 7 1200 1 10 5 70.35 8 1200 2 0 10 76.61 9 1200 3 5 0 66.70 K1 52.84 57.47 55.81 55.56 K2 80.04 74.00 71.39 68.86 K3 71.22 72.62 76.90 79.68 R 27.20 16.53 21.09 24.12 较优方案 1000 2 10 10 -
[1] 徐丽君, 李亮, 陈六限, 等. 攀西地区钒钛磁铁矿综合回收利用现状及发展方向[J]. 四川有色金属, 2011(1):1-5. doi: 10.3969/j.issn.1006-4079.2011.01.001XU L J, LI L, CHEN L X, et al. Current situation and development direction of comprehensive recovery and utilization of vanadium-titanium magnetite in Panxi area[J]. Sichuan Nonferrous Metals, 2011(1):1-5. doi: 10.3969/j.issn.1006-4079.2011.01.001 [2] LV X, LUN Z, YIN J, et al. Carbothermic reduction of vanadium titanomagnetite by microwave irradiation and smelting behavior[J]. ISIJ International, 2013, 53(7):1115-1119. doi: 10.2355/isijinternational.53.1115 [3] 张成强, 孙传尧, 印万忠, 等. 以氟化钙为助浸剂的某伊利石型含钒石煤提钒工艺[J]. 矿产综合利用, 2019(5):42-47. doi: 10.3969/j.issn.1000-6532.2019.05.009ZHANG C Q, SUN C Y, YIN W Z, et al. Acid leaching of vanadium from an illite-type vanadium- containing stone using calcium fluoride as aid-leaching reagent[J]. Multipurpose Utilization of Mineral Resources, 2019(5):42-47. doi: 10.3969/j.issn.1000-6532.2019.05.009 [4] 李兰杰, 张力, 郑诗礼, 等. 钒钛磁铁矿钙化焙烧及其酸浸提钒[J]. 过程工程学报, 2011, 11(4):573-578.LI L J, ZHANG L, ZHENG S L, et al. Vanadium-titanium magnetite calcification roasting and acid leaching of vanadium[J]. The Chinese Journal of Process Engineering, 2011, 11(4):573-578. [5] 肖万海, 赵宏欣, 宋宁, 等. 盐酸与硫酸浸出预还原钒钛磁铁矿混合精矿中的Fe, V及Ti[J]. 过程工程学报, 2016, 16(5):737-743. doi: 10.12034/j.issn.1009-606X.216148XIAO W H, ZHAO H X, SONG N, et al. Hydrochloric acid and sulfuric acid leaching pre-reduced Fe, V and Ti in mixed concentrate of vanadium-titanium magnetite[J]. The Chinese Journal of Process Engineering, 2016, 16(5):737-743. doi: 10.12034/j.issn.1009-606X.216148 [6] Jie Zhou, Qing Yu, Yu Huang, et al. Recovery of scandium from white waste acid generated from the titanium sulphate process using solvent extraction with TRPO[J]. Hydrometallurgy, 2020, 195:105398. doi: 10.1016/j.hydromet.2020.105398 [7] 胡艺博, 叶国华, 左琪, 等. 从石煤钒矿酸浸液中萃取提钒的研究进展与前景[J]. 矿产综合利用, 2020(1):10-15. doi: 10.3969/j.issn.1000-6532.2020.01.002HU Y B, YE G H, ZUO Q, et al. The research progress and prospect of extractants for vanadium from acid leaching solution of stone coal vanadium ore[J]. Multipurpose Utilization of Mineral Resources, 2020(1):10-15. doi: 10.3969/j.issn.1000-6532.2020.01.002 [8] 王吉华, 高建明. 用钛白废酸和硫酸渣制备铁精粉[J]. 湿法冶金, 2020, 39(3):237-240. doi: 10.13355/j.cnki.sfyj.2020.03.013WANG J H, GAO J M. Preparation of fine iron powder from titanium dioxide waste acid and sulfuric acid slag[J]. Hydrometallurgy, 2020, 39(3):237-240. doi: 10.13355/j.cnki.sfyj.2020.03.013 [9] 李军, 吴恩辉, 侯静, 等. 利用新硫酸和钛白废酸直接酸浸含钒钢渣实验研究[J]. 钢铁钒钛, 2020, 41(3):16-22. doi: 10.7513/j.issn.1004-7638.2020.03.002LI J, WU E H, HOU J, et al. Experimental study on direct acid leaching of vanadium-containing steel slag with new sulfuric acid and waste acid from titanium dioxide[J]. Steel Vanadium and Titanium, 2020, 41(3):16-22. doi: 10.7513/j.issn.1004-7638.2020.03.002 [10] 李航, 张太亮, 吕利平, 等. 钛白废酸活化制备污泥活性炭的改性及应用[J]. 现代化工, 2019, 39(4):131-136. doi: 10.16606/j.cnki.issn0253-4320.2019.04.029LI H, ZHANG T L, LV L P, et al. Modification and application of activated carbon from sludge prepared by activation of waste acid from titanium dioxide[J]. Modern Engineering, 2019, 39(4):131-136. doi: 10.16606/j.cnki.issn0253-4320.2019.04.029 -