• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊评价数据库来源期刊
  • 世界期刊影响力指数(WJCI)报告
    (2020、2021科技版)收录期刊
  • SCOPUS, DOAJ, EBSCO, JST, CA数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

先锋植物修复介导的根际微域对铅锌冶炼废渣中重金属的形态分异特性影响

朱鑫维 吴永贵 李鑫龙 罗有发 孙航

朱鑫维, 吴永贵, 李鑫龙, 罗有发, 孙航. 先锋植物修复介导的根际微域对铅锌冶炼废渣中重金属的形态分异特性影响[J]. 矿产综合利用, 2022, 43(6): 94-103, 130. doi: 10.3969/j.issn.1000-6532.2022.06.017
引用本文: 朱鑫维, 吴永贵, 李鑫龙, 罗有发, 孙航. 先锋植物修复介导的根际微域对铅锌冶炼废渣中重金属的形态分异特性影响[J]. 矿产综合利用, 2022, 43(6): 94-103, 130. doi: 10.3969/j.issn.1000-6532.2022.06.017
Zhu Xinwei, Wu Yonggui, Li Xinlong, Luo Youfa, Sun Hang. Influence of Pioneer Phytoremediation-induced Rhizosphere Microdomains on the Morphological Differentiation of Heavy Metals in Lead-Zinc Smelting Slag[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(6): 94-103, 130. doi: 10.3969/j.issn.1000-6532.2022.06.017
Citation: Zhu Xinwei, Wu Yonggui, Li Xinlong, Luo Youfa, Sun Hang. Influence of Pioneer Phytoremediation-induced Rhizosphere Microdomains on the Morphological Differentiation of Heavy Metals in Lead-Zinc Smelting Slag[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(6): 94-103, 130. doi: 10.3969/j.issn.1000-6532.2022.06.017

先锋植物修复介导的根际微域对铅锌冶炼废渣中重金属的形态分异特性影响

doi: 10.3969/j.issn.1000-6532.2022.06.017
基金项目: 国家重点研发计划项目(2018YFC1802602);国家自然科学基金-贵州省联合资助项目(U1612442);国家自然科学基金(41663009);贵州省百层次创新人才培养计划项目(黔科合平台人才(2020)6002)
详细信息
    作者简介:

    朱鑫维(1996-),男,在读硕士研究生,主要从事矿山生态环境修复研究

    通讯作者:

    吴永贵(1972-),男,博士,教授,研究方向为环境生态修复、污染生态效应和污染生态控制。

  • 中图分类号: TD982; X753

Influence of Pioneer Phytoremediation-induced Rhizosphere Microdomains on the Morphological Differentiation of Heavy Metals in Lead-Zinc Smelting Slag

  • 摘要: 为研究金属冶炼废渣堆场内典型先锋草本植物对废渣养分及重金属形态的影响,以开展植被重建5年的铅锌冶炼废渣堆场上先锋草本植物(三叶草,Trifoliumrepens;黑麦草,Loliumperenne)根际微域为研究对象,分析在生态修复过程中两种草本植物根际微域不同粒径废渣(<0.25、0.25~0.5、0.5~1、1~2、2~5、>5 mm)中重金属含量与赋存形态及养分的分异特征。结果表明:废渣内植物养分主要分布在<1 mm的小粒径废渣中;植物根际与非根际废渣中有机质与全氮含量总体上随废渣粒径增加呈先升高后降低的趋势,而有效氮、有效磷含量则随废渣粒径增加呈降低趋势;两种草本植物对废渣养分的改善效果主要表现为三叶草>黑麦草>对照,并表现出明显的根际效应(根际>非根际)。两种植物修复作用显著影响废渣重金属含量及其赋存形态在不同粒径中的分布:(1)三叶草根际废渣Pb、Cu含量显著低于对照,并促使Cd向残渣态转化;(2)黑麦草根际不同粒径废渣Cu、Cd含量发生再分配,在细小粒径(<0.5 mm)废渣中的含量显著降低;(3)两种植物根际废渣酸可溶解态Cu、Pb、Cd、Zn的比例明显降低,且比例随废渣粒径增加而上升。综上,三叶草和黑麦草作为废渣堆场生态修复的先锋植物,可为外来优势植物的自然定居创造良好的植生条件,并对细小粒径废渣扩散迁移生态风险的控制具有重要意义。

     

  • 图  1  两种草本植物根际微域各粒径废渣中有机质含量的分布特征

    注:同一组中不同大写字母表示各粒径废渣指标存在差异显著性(p<0.05),同一粒径中不同小写字母表示不同组间存在差异显著性

    Figure  1.  Distribution of organic matter content in plant rhizosphere and non-rhizosphere waste slag with different particle sizes

    图  2  两种草本植物根际微域各粒径废渣中氮素含量的分布特征

    Figure  2.  Distribution of nitrogen content in plant rhizosphere and non-rhizosphere waste slag with different particle sizes

    图  3  两种草本植物根际微域各粒径废渣中磷素含量的分布特征

    Figure  3.  Distribution of phosphorus content in plant rhizosphere and non-rhizosphere waste slag with different particle sizes

    图  4  两种草本植物根际微域各粒径废渣中重金属的含量分布特征

    Figure  4.  Distribution of heavy mental content in plant rhizosphere and non-rhizosphere waste slag with different particle sizes

    图  5  两种草本植物根际微域各粒径废渣中重金属赋存形态特征

    注:各组中六个百分比堆积柱状图由左向右依次表示<0.25、0.25~0.5、0.5~1、1~2、2~5、>5 mm粒径

    Figure  5.  Proportion of heavy mental chemical form in plant rhizosphere and non-rhizosphere waste slag with different particle sizes

    图  6  不同类型草本植物修复下各粒径废渣中养分、重金属的PCA分布规律

    (T):重金属含量;(F1):酸可溶解态重金属含量;OM、TN、AN、TP、AP分别表示:有机质、全氮、有效氮、总磷、有效磷含量

    Figure  6.  Principal component analysis of nutrients between heavy metals in slag with different particle sizes

    表  1  不同类型植物根际微域各粒径养分、酸可溶解态重金属含量间相关性

    Table  1.   Correlation between nutrient, heavy metal amount and acid soluble state content in rhizosphere and non-rhizosphere

    OMTNANTPAPCu(F1)Pb(F1)Zn(F1)Cd(F1)
    OM1
    TN0.863**1
    AN0.709**0.909**1
    TP0.716**0.848**0.836**1
    AP0.477*0.586**0.778**0.774**1
    Cu(F1)-0.662**-0.527**-0.532*-0.642**-0.593**1
    Pb(F1)-0.514**-0.419*-0.484*-0.548**-0.611**0.880**1
    Zn(F1)-0.443*-0.455*-0.708**-0.526**-0.711**0.430*0.3351
    Cd(F1)-0.274-0.304-0.244-0.0650.1370.0100.0180.0451
    **表示在p<0.01水平(双侧)上极显著相关。*表示在p<0.05水平(双侧)上显著相关。
    下载: 导出CSV
  • [1] Cortad U, Carmen H M, Martinez J,et al. Impact in soils caused by metal(loid)s in lead metallurgy. the case of La Cruz Smelter (Southern Spain)[J]. Journal of Geochemical Exploration, 2018, 190:302-313.
    [2] Valenzuela E I , Alexander C G, Leonel E A, et al. Stabilization of potentially toxic elements contained in mine waste: a microbiological approach for the environmental management of mine tailings[J]. Journal of Environmental Management, 2020, 270:110873.
    [3] 林文杰. 土法炼锌区生态退化与重金属污染[J]. 生态环境学报, 2009, 18(1):149-153. doi: 10.3969/j.issn.1674-5906.2009.01.029

    LIN W J. Ecological degeneration and heavy metals pollution in zinc smelting areas[J]. Ecology and Environmental Sciences, 2009, 18(1):149-153. doi: 10.3969/j.issn.1674-5906.2009.01.029
    [4] 吴攀, 刘丛强, 杨元根, 等. 土法炼锌废渣堆中的重金属及其释放规律[J]. 中国环境科学, 2002, 22(2):14-18. doi: 10.3321/j.issn:1000-6923.2002.02.004

    WU P, LIU C Q, YANG Y G, et al. Heavy metals and their release in the wastes residue pile at the indigenous zinc smelting area[J]. China Environmental Science, 2002, 22(2):14-18. doi: 10.3321/j.issn:1000-6923.2002.02.004
    [5] 林文杰, 肖唐付, 周晚春, 等. 黔西土法炼锌区Pb、Zn、Cd地球化学迁移特征[J]. 环境科学, 2009, 30(7):2065-2070. doi: 10.3321/j.issn:0250-3301.2009.07.032

    LIN W J, XIAO T F, ZHOU W C, et al. Environmental concerns on geochemical mobility of lead, zinc and cadmium from zinc smelting areas: western Guizhou, China[J]. Environmental Science, 2009, 30(7):2065-2070. doi: 10.3321/j.issn:0250-3301.2009.07.032
    [6] Li X Y, Li Z G, Lin C J. Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb-Zn smelter in central China[J]. Ecotoxicology and Environmental Safety, 2018, 161:99-110. doi: 10.1016/j.ecoenv.2018.05.080
    [7] 林文杰, 肖唐付. 土法炼锌区基质改良对刺槐生长的影响[J]. 生态与农村环境学报, 2013, 29(6):53-59. doi: 10.3969/j.issn.1673-4831.2013.06.009

    LIN W J, XIAO T F. Effect of substrate amelioration on the growth of robiniapseudoacacia in a typical deserted zinc smelting site[J]. Journal of Ecology and Rural Environment, 2013, 29(6):53-59. doi: 10.3969/j.issn.1673-4831.2013.06.009
    [8] 郁珊珊, 王浩, 王亚军. 南京市不同园林植物根际土壤养分和重金属富集特征[J]. 水土保持学报, 2016, 30(3):120-127. doi: 10.13870/j.cnki.stbcxb.2016.03.022

    YU S S, WANG H, WANG Y J. Distribution of soil nutrients and heavy metals in rhizosphere versus non-rhizosphere area of different landscape plants in Nanjing[J]. Journal of Soil and Water Conservation, 2016, 30(3):120-127. doi: 10.13870/j.cnki.stbcxb.2016.03.022
    [9] 邱静, 吴永贵, 罗有发, 等. 两种先锋植物对铅锌废渣生境改善及重金属迁移的影响[J]. 农业环境科学学报, 2019, 38(4):798-806. doi: 10.11654/jaes.2018-0752

    QIU J, WU Y G, LUO Y F, et al. Effects of two pioneer plants on habitat improvement and heavy metal migration of lead-zinc smelting slags[J]. Journal of Agro Environment Science, 2019, 38(4):798-806. doi: 10.11654/jaes.2018-0752
    [10] Wang L, Ji B, Hu Y H. A review on in situ phytoremediation of mine tailings[J]. Chemosphere, 2017, 184:594-600. doi: 10.1016/j.chemosphere.2017.06.025
    [11] Bravin M N, Garnier C, Lenoble V, et al. Hinsinger root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere[J]. Geochimica et Cosmochimica Acta, 2012, 84:256-268. doi: 10.1016/j.gca.2012.01.031
    [12] 艾艳君, 卢赛, 李富平, 等. 施加污泥堆肥对铅锌尾矿中黑麦草长势及重金属稳定性影响[J]. 矿产综合利用, 2021(4):29-35. doi: 10.3969/j.issn.1000-6532.2021.04.005

    AI Y J, LU S, LI F P, et al. Effect of sewage sludge compost addition on stabilization of heavy metal and growth of ryegrass in lead/zinc tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(4):29-35. doi: 10.3969/j.issn.1000-6532.2021.04.005
    [13] 邓敏, 程蓉, 舒荣波, 等. 攀西矿区典型重金属污染土壤化学-微生物联合修复技术探索[J]. 矿产综合利用, 2021(4):1-9. doi: 10.3969/j.issn.1000-6532.2021.04.001

    DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial remediation technology for soil contaminated by typical heavy metals in Panxi mining area[J]. Multipurpose Utilization of Mineral Resources, 2021(4):1-9. doi: 10.3969/j.issn.1000-6532.2021.04.001
    [14] 徐磊, 周俊, 张文辉, 等. 植被恢复对重金属污染土壤有机质及团聚体特征的影响[J]. 水土保持研究, 2017, 24(6):194-199. doi: 10.13869/j.cnki.rswc.2017.06.028

    XU L, ZHOU J, ZHANG W H, et al. Effects of vegetation restoration on soil organic matter and aggregate characteristics of heavy metal contaminated soils[J]. Research of Soil and Water Conservation, 2017, 24(6):194-199. doi: 10.13869/j.cnki.rswc.2017.06.028
    [15] 吴兴玉, 吴永贵, 罗有发, 等. 2种优势植物对不同粒径炼锌废渣团聚体养分及重金属赋存形态分布的影响[J]. 水土保持学报, 2020, 34(1):307-314. doi: 10.13870/j.cnki.stbcxb.2020.01.044

    WU X Y, WU Y G, LUO Y F, et al. Effects of two dominant plants on nutrients and occurrence mode of heavy metals in aggregate of different sizes of indigenous zinc smelting slag[J]. Journal of Soil and Water Conservation, 2020, 34(1):307-314. doi: 10.13870/j.cnki.stbcxb.2020.01.044
    [16] 孙航, 吴永贵, 罗有发, 等. 三叶草和黑麦草修复对炼锌废渣剖面养分及重金属分布特征的影响[J]. 环境科学学报, 2020, 40(3):1063-1073. doi: 10.13671/j.hjkxxb.2019.0396

    SUN H, WU Y G, LUO Y F, et al. Effect of Trifoliumrepens and Loliumperenne restoration on distribution characteristics of nutrient and heavy metals in zinc smelting slag profiles[J]. Acta Scientiae Circumstantiae, 2020, 40(3):1063-1073. doi: 10.13671/j.hjkxxb.2019.0396
    [17] Luo Y F, Wu Y G, Wang H, et al. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years[J]. Environmental Science and Pollution Research, 2018, 25(15):14773-14788. doi: 10.1007/s11356-018-1573-6
    [18] 吴攀, 刘丛强, 杨元根, 等. 炼锌固体废渣中重金属(Pb、Zn)的存在状态及环境影响[J]. 地球化学, 2003, 32(2):139-145. doi: 10.3321/j.issn:0379-1726.2003.02.006

    WU P, LIU C Q, YANG Y G, et al. Environmental impacts and geochemical partitioning of heavy metals (Pb, Zn) in the historical Zn smelting wastes[J]. Geochimica, 2003, 32(2):139-145. doi: 10.3321/j.issn:0379-1726.2003.02.006
    [19] 孙桂芳, 金继运, 石元亮. 土壤磷素形态及其生物有效性研究进展[J]. 中国土壤与肥料, 2011(2):1-9. doi: 10.3969/j.issn.1673-6257.2011.02.001

    SUN G F, JIN J Y, SHI Y L. Research advance on soil phosphorous forms and their availability to crops in soil[J]. Soil and Fertilizer Sciences in China, 2011(2):1-9. doi: 10.3969/j.issn.1673-6257.2011.02.001
    [20] 曾宪坤. 有色金属矿山强酸性尾矿库无土生态恢复技术研究[D]. 南昌: 南昌大学, 2017.

    ZENG X K. Research on soilless ecological restoration technology of strong acidic tailings pond of non-ferrous metal mine[D]. Nanchang: Nanchang University, 2017.
    [21] 沈宏, 杨存义, 范小威, 等. 大豆根系分泌物和根细胞壁对难溶性磷的活化[J]. 生态环境, 2004, 13(4):633-635.

    SHEN H, YANG C Y, FAN X W, et al. Mobilization of sparingly soluble phosphates by root exudatesand root cell wall of soybean seedlings[J]. Ecology and Environment, 2004, 13(4):633-635.
    [22] Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Pergamon, 2000, 32(14):2099-2103.
    [23] 朱甜甜, 朱玉伟, 张云, 等. 伊犁河谷农田防护林生物量及碳储量研究[J]. 江苏农业科学, 2019, 47(9):298-302. doi: 10.15889/j.issn.1002-1302.2019.09.069

    ZHU T T, ZHU Y W, ZHANG Y, et al. Study on carbon storage and biomass of Yili River Vally farmland shelterbelt forest[J]. Jiangsu Agricultural Sciences, 2019, 47(9):298-302. doi: 10.15889/j.issn.1002-1302.2019.09.069
    [24] Adesodun J K, Adeyemi E F, Oyegoke C O. Distribution of nutrient elements within water-stable aggregates of two tropical agro-ecological soils under different land uses[J]. Soil and Tillage Research, 2007, 92(1):190-197.
    [25] 文倩, 赵小蓉, 张书美, 等. 半干旱地区不同土壤团聚体中微生物量磷的分布特征[J]. 中国农业科学, 2005, 38(2):327-332. doi: 10.3321/j.issn:0578-1752.2005.02.018

    WEN Q, ZHAO X R, ZHANG S M, et al. Distribution characteristics of microbial biomass phosphorus indifferent soil aggregates in semi-arid area[J]. Scientia Agricultura Sinica, 2005, 38(2):327-332. doi: 10.3321/j.issn:0578-1752.2005.02.018
    [26] Li H X, Ji H B, Shi C J, et al. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health[J]. Chemosphere, 2017, 172:505-515. doi: 10.1016/j.chemosphere.2017.01.021
    [27] 麻占威, 吴永贵, 付天岭, 等. 不同粒径铅锌冶炼废渣中重金属分布特征[J]. 环境科学与技术, 2015, 38(4):149-154.

    MA Z W, WU Y G, FU T L, et al. Distribution characteristics of heavy metals of different particle sizes in lead-zinc slag[J]. Environmental Science and Technology, 2015, 38(4):149-154.
    [28] Yan L, Li C L, Zhang J J, et al. Enhanced phytoextraction of lead from artificially contaminated soil by mirabilis jalapa with chelating agents[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(2):208-212. doi: 10.1007/s00128-017-2127-1
    [29] 罗有发. 植物修复对土法炼锌废渣中重金属的生物地球化学过程的影响[D]. 贵阳: 贵州大学, 2018.

    LUO Y F. The effect of phytoremediation on the biogeochemical process of heavy metals in the waste slag of zinc smelting[D]. Guiyang: Guizhou University, 2018.
    [30] Luo Y F, Wu Y G, Shu J, et al. Effect of particulate organic matter fractions on the distribution of heavy metals with aided phytostabilization at a zinc smelting waste slag site[J]. Environmental Pollution, 2019, 253:330-341. doi: 10.1016/j.envpol.2019.07.015
    [31] 吴婷, 李小平, 蔡月, 等. 铅污染不同粒径土壤的重金属地球化学行为与风险[J]. 中国环境科学, 2017, 37(11): 4212-4221.

    WU T, LI X P, CAI Y, et al. Geochemical behavior and risk of heavy metals in different size lead-polluted soil particles[J]. China Environmental Science, 2017, 37(11): 4212-4221.
    [32] Sipos P, Toth A, Kis V K, et al. Partition of Cd, Cu, Pb and Zn among mineral particles during their sorption in soils[J]. Journal of Soils and Sediments, 2018, 19(4):1775-1787.
    [33] Li R F, Tan W B, Wang G A, et al. Nitrogen addition promotes the transformation of heavy metal speciation from bioavailable to organic bound by increasing the turnover time of organic matter: An analysis on soil aggregate level[J]. Environmental Pollution, 2019, 255:113170. doi: 10.1016/j.envpol.2019.113170
    [34] Qu C C, Chen W L, Hu X P, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors[J]. Environmental International, 2019, 131:104995. doi: 10.1016/j.envint.2019.104995
    [35] Seshadri, B, Bolan, N. S, Choppala, G, et al. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil[J]. Chemosphere, 2017, 184:197-206. doi: 10.1016/j.chemosphere.2017.05.172
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  19
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-04
  • 修回日期:  2021-09-12

目录

    /

    返回文章
    返回