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Fig.4 Effect of soluble fluorine on the mechanical properties
of hardened body of a-hemihydrate gypsum
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Abstract: This is an article in the field of mineral materials. The preparation of a-hemihydrate gypsum from
phosphogypsum instead of natural gypsum is an important way of its high value-added utilization. However,
soluble fluorine impurities in phosphogypsum will have adverse effects on a-hemihydrate gypsum. In this
article, the effect of soluble fluorine on the setting time and the strength of the hardened body of o-
hemihydrate gypsum was studied, and its mechanism was explored by XRD, SEM-EDS and XPS. The
results show that soluble fluorine can shorten the setting time and decrease the mechanical strength of a-
hemihydrate gypsum. The microstructure analysis of hardened body shows that soluble fluorine can coarsen
the particles of gypsum dihydrate, increase the internal pores, and reduce the mechanical strength. XRD and
XPS analysis show that soluble fluorine reacts with Ca** generated by the dissolution of a-hemihydrate
gypsum to form calcium fluoride with smaller solubility product, thus shortening the setting time of a-

hemihydrate gypsum.
Keywords: Mineral materials; a-hemihydrate gypsum; Soluble fluorine; Mechanical strength; Setting time;
Influence mechanism
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Mechanism of Action of a New Type of Collector SAA in the Separation of
Magnesite and Quartz

SUN Yishen', GU Pan®, YAO Jin', YIN Wanzhong', SUN Haoran’, XUE Feijia', YANG Shuo'
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Liaoning, China; 3.College of Materials Science and Engineering, Shenyang University of Science and
Technology, Shenyang 110159, Liaoning, China)

Abstract: This is an article in the field of mineral processing engineering. The effect of stearylamine acetate
(SAA) on the flotation behavior of quartz and magnesite was investigated by single-mineral flotation tests,
and the selective trapping mechanism of SAA on the surfaces of the two minerals was examined by zeta
potential, contact angle, and X-ray photoelectron spectroscopy (XPS). The results of single-mineral flotation
tests showed that SAA has high selective trapping ability for quartz, and SAA can effectively remove quartz
from magnesite in mixed-mineral flotation with different ratios. Through the zeta potential measurement, it is
found that the addition of SAA trapping agent makes the isoelectric point of magnesite and quartz surfaces
positively shifted, and the isoelectric point of quartz surfaces positively shifted intensity is much larger than
that of magnesite, which indicates that SAA has better selectivity. In the contact angle test, SAA can enhance
the contact angle selectivity of quartz, resulting in the uplift of quartz to realize the separation from
magnesite. According to the XPS analysis, strength of SAA bonding to quartz surface significantly increased
compared to magnesite, and when the two compete for adsorption of SAA, SAA is preferentially adsorbed
on the quartz surface. Therefore, SAA can be used as a highly selective trapping agent to effectively separate

magnesite from quartz.
Keywords: Mineral processing engineering; Magnesite; Quartz; SAA; Contact angle; XPS
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