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Fig.1 Two mechanisms of sulfate-reducing bacteria inactivating heavy metal
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Fig.2 Schematic of the bioaccumulation mechanism for growing B. cereus RC-1 at different initial Cd(II) concentration:
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Optimization of the Mathematical Model of Cyclone Separation
Performance Based on Response Surface Analysis

CONG Longfei'?, WANG Shengyu', LUO Jiajing', ZHOU Changchun®
(1.Weihai Shangpin Mechanical Equipment Technology Co., Ltd., Weihai 264400, Shandong, China;
2.School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou
221116, Jiangsu, China)

Abstract: This is an article in the field of mining engineering. With the increasing application of cyclone in
the field of mineral processing, the influence of its operating factors on the separation performance has been
paid more and more attention in the production process. At present, various researches on the separation
performance of cyclone have been widely reported, but they are generally limited to the structural factors of
cyclone, and do not consider the effects of operational factors (inlet pressure P, dispersion concentration C;)
and the interaction between factors on the separation performance. In order to explore the influence of
cyclone operating factors on separation performance, response surface analysis was applied to design
experiments to optimize the mathematical models of cyclone main diameter Dc and operating factors on
cyclone classification efficiency E; and classifier size D,,, and explore the interaction between them, which
can achieve the best separation performance regulation of cyclone. Through the analysis of 17 groups of test
results by design expert, the following results are obtained: classification efficiency fitting formula-
andgrading granularity fitting formula. The 3D surface response analysis shows that the main diameter, inlet
pressure and inlet concentration have a significant effect on the classification efficiency and particle size of
D> C;>P, and for the classification efficiency and particle size, the interaction between D, and C; and
between D_and P is relatively strong, while the interaction between C;and P is weak.

Keywords: Mining engineering; Response surface analysis; Cyclone; Operational factors; Classification
performance; Mathematical model
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Research Progress of Different Types of Microorganisms Passivation and
Fixation of Cadmium Contamination

CHEN Ruihong, QIN Yongli, LAI Feng, JIANG Yongrong
(School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004,
Guangxi, China)

Abstract: This is an article in the field of ecological restoration of mines. In recent years, the microbial
passivation and fixation has gradually become a hotspot in the field of heavy metal contamination control.
Here is a review to summarize the mechanism of microbial passivation and fixation of cadmium based on the
passivation and immobilization of typical strains and heavy metal cadmium: (1) Microbial cell walls and
extracellular polymers (EPS) have abundant groups, such as carboxyl, hydroxyl, etc., which can effectively
adsorb Cd*', and passivated into crystalline minerals. (2) Sulfate-reducingbacteria, phosphate-dissolving
bacteria, urease-producing bacteria in the environment can generate metal precipitates through their own
metabolism, and then form crystal minerals through changes in the microenvironment. Fe/Mn oxidizing
microorganisms indirectly adsorb heavy metal ions through their own metabolites. To study the reaction
mechanism of microbial passivation and immobilization of cadmium and the formation of microenvironment
conditions of cadmium-containing crystal minerals, which is of great significance for the remediation of
cadmium pollution.

Keywords: Ecological restoration of mines; Microorganism; Cadmium pollution; Passivation fixation;
Mechanism
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