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摘要：锂矿石锂渣是随着锂电池行业蓬勃发展出现的新型大宗难处理固体废弃物，由于其组分复杂导致

不同锂渣特性存在差异。论文通过 XRF、XRD、物理性能测试、SEM 测试、孔隙结构测试等表征手段测试了

锂辉石和锂云母锂渣，研究了锂辉石和锂云母锂渣的理化特性。结合实验研究与以往研究文献的结论，对锂矿

石特性、锂矿石提锂工艺、锂渣特性和锂渣堆存情况作了详尽的阐述。锂渣经处理后具有火山灰活性，可用作

建筑材料，如混凝土与水泥制品、水泥、墙体材料、烧结材料等。论文阐述了锂辉石和锂云母锂渣在建材化应

用方面的同异之处，并针对锂渣不同特性对未来锂渣资源再利用途径提出合理建议，为锂电行业可持续发展提

供参考。
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随着国家“碳达峰、碳中和”政策的实施与推

进，近年来在各项新能源开发领域都取得了诸多

成果，尤其是在新能源电池行业取得了多次重大

突破，电池行业也一跃成为炙手可热的新兴朝阳

产业 [1-2]。在众多电池中，锂电池无疑最受关注，

这得益于锂高比热容与化学活性好等特点 [3-5]。

中国新能源汽车市场正处于高速发展期，新能源

汽车产业链涉及多个领域和环节，其中锂资源是

最为核心和关键的原材料之一，因此锂资源供需

矛盾日益凸显[6-8]。

中国具有工业开采价值的固态锂资源主要为

锂矿石，包括锂辉石、锂云母、透锂长石、铁锂

云母和磷锂铝石。其中只有锂辉石得到工业规模

化应用，这是由于锂辉石组成简单且含锂量较

高，方便提取，且中国有着世界第二大的锂辉石

矿，存储量大[9-11]。锂云母成分复杂但储量大，在

中国江西宜春有着世界上最大的伴生锂云母矿

床，这是中国在未来的重要储备锂资源，具有极

高的战略价值和研究开发意义[12-14]。透锂长石、铁

锂云母和磷锂铝石由于含锂量低以及储量小的原

因，目前相关研究较少且研究意义不大。当前锂

矿的大规模开采导致了锂渣源源不断地产生，如
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果将锂渣就地填埋会对当地土壤及水质造成污

染，因而如何将锂渣应用到其他领域避免污染成

为近年来的热门课题。锂辉石与锂云母由于本身

组分的不同，产生的锂渣特性也有所不同，因此

有必要分开讨论并根据特性不同探讨相对应的资

源可回收应用方法。

本文在讨论锂辉石与锂云母矿石提锂的基础

上，开展实验着重综述了锂辉石与锂云母矿石提

取锂后所产生锂渣的特性对比以及锂渣目前在建

材领域的应用研究进展，并探讨了锂辉石锂渣与

锂云母锂渣在新领域、新工艺上的发展方向和可

能性。

 1　锂矿的晶体结构与提锂工艺

 1.1　锂辉石的晶体结构与提锂工艺

锂 辉 石 又 叫 α-锂 辉 石 ， Li 离 子 填 充 在

[SiO4] 四面体和 [AlO6] 八面体中间形成稳定结

构，使得 α-锂辉石化学惰性大，除氢氟酸外，几

乎不与各种酸碱发生反应[15]。α-锂辉石在 1 000 ℃
以上转变为四方晶系架状结构的 β-锂辉石，Al 取
代了部分 Si 的位置形成 [AlO4] 四面体，Li+补充电

荷亏欠填充于结构空隙，拥有更大的活动空间。

晶体体积增大具有更大的离子交换性质，使得 β-
锂辉石具有更高的化学活性。

锂矿石的提锂工艺一般需要经过破碎、研

磨、筛选和提取这四道工序。锂辉石目前主要的

提取工艺有六种，分别是硫酸法、石灰石法、硫

酸盐法、氯化焙烧法、氟化法和纯碱压煮

法[15]。其中硫酸法处理锂辉石是世界各大锂业公

司生产碳酸锂所主要采用的成熟工艺，其酸化焙

烧反应为：

β−Li2O ·Al2O3 ·4SiO2+H2SO4（浓）→
Li2SO4+Al2O3 ·4SiO2 ·H2O (1)

 1.2　锂云母的晶体结构与提锂工艺

锂云母是一种典型的层状硅酸盐矿物，在地

壳中与白云母、金云母和其他含锂云母形成固溶

体矿物属于伟晶岩矿物。锂云母的化学结构式为

K{Li2-xAl1+x[Al2xSi4-2xO10](F,OH)2}x=0～0.5)，属

于单斜晶系，其晶型呈假六方形，完好晶体比较

少见，常成片状、细小鳞片状集合体，故得名鳞

云母[16]。其晶体结构呈 TOT 型（图 1），是由铝

氧八面体和硅氧四面体构成骨架，其中由于 Al3+类

质同象取代部分 Si4+造成层间电荷不平衡，而层间

亏欠的电荷需由 Li+等碱金属阳离子进行补充，使

得 Al3+、Li+填充于晶体结构中的八面体位置。
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图 1    锂云母晶体 TOT 空间构型结构示意
Fig.1    Schematic diagram of TOT spatial configuration

structure of lithium mica crystals
 

锂云母精矿中的锂经不同工艺提取后主要制

成以碳酸锂、氢氧化锂和氯化锂等形式的一次锂

盐产品，而提锂工艺分为以下几大类：酸法、碱

法、盐法、压煮法和其他新型方法[17]。其中硫酸

钙盐法提锂是目前中国主要的锂云母提锂方法，

锂的提取率可以达到 96%[18]。锂云母矿加入添加

剂总量 80% 的硫酸盐后，在 900 ℃ 下焙烧 1 h，
焙烧后锂云母由致密层状和鳞片状转变为疏松多

孔、易碎、活性较高的团簇状焙烧料。然后按一

定液固比加水恒温浸出，结束后将浆料真空过滤

并洗涤，得到含锂浸出液和浸出渣，后续中和除

杂可制备碳酸锂[14]。

 1.3　锂渣产量及堆存现状

随着锂资源的需求和市场日益增大，中国的

碳酸锂企业随之增多，碳酸锂生产的同时也伴随

着锂渣的产生，目前锂渣大量堆存的情况不仅严

重影响到碳酸锂企业的生产，还对当地生态环境

等带来安全隐患。江西宜春有着世界上最大的锂

云母伴生矿，当地碳酸锂企业的锂渣产量与堆存

情况对当前锂渣处置情况有一定的代表性，我院

在对多家碳酸锂企业调研后，得出了宜春锂渣现

况的初步报告。调研结果表明，宜春碳酸锂企业

都存在锂渣堆存的现象，根据提锂原矿石品位的

不同，每次生产 1 t 碳酸锂产生的锂渣从 20 t 到
55 t 不等。出现大量堆存的原因一方面是由于不同

工艺、不同开采区生产的锂渣放射性、重金属含

量及浸出含量等不尽相同，还需要确定技术无害

化处理后的锂渣的基本理化性能，这样才能开展

下一步锂渣资源化利用技术方向或途径的研究与

论证；另一个方面是由于许多企业对锂渣建材化
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研究不够深入，锂渣产品市场小、市场竞争力

弱，无法大量消耗锂渣。绝大部分企业的锂渣都

只能采取仓库堆存方式储存，甚至还需租赁当地

仓库才能满足堆存需求，不仅租金高昂，同时也

无法实际解决困境。部分锂渣销售给水泥、水泥

制品、蒸压加气混凝土、掺合料企业，补贴运费

30～ 60 元 /t，以此来缓解企业仓库告急困境。

2023 年宜春地区被调研碳酸锂生产企业锂渣产生

量为 641 万吨，堆存量为 469 万吨，锂渣堆存占

比达到了 73.17%，利用量不足三成，目前急需开

发锂渣资源高效化利用的途径。

 2　锂渣的理化性质对比

 2.1　化学组成与物相分析

锂辉石锂渣中 SiO2 和 Al2O3 含量非常高，其

主要来源于锂辉石。锂辉石锂渣中 SO3、Na2O 和

K2O 含量较高，其中 SO3 的主要来源是石膏和硫

酸钠；Na2O 主要来源于硫酸钠和碳酸钠，少量来

源于锂辉石；K2O 主要来源于锂辉石。锂云母锂

渣中主要化学成分为 SiO2 和 Al2O3，其来源于锂

云母。锂云母锂渣中 SO3 含量主要来源于石膏和

硫酸钠；较多的 Na2O 主要来源于硫酸钠和碳酸

钠，少量来源于锂云母；较高的 K2O 含量主要来

源于锂云母。

图 2(a) 为锂辉石锂渣的 XRD，通常锂辉石锂

渣主要物相是锂辉石、石膏、石英。其中锂辉石

是提锂过程主要矿物相，而石英是锂辉石的共生

矿物，石膏主要来源于石灰石粉和硫酸反应生

成。图 2(b) 为锂云母锂渣的 XRD，通常锂云母锂

渣主要物相是蓝方石、石膏、石英、萤石和钠长

石。其中蓝方石、石英、钠长石和萤石是锂云母

的共生矿物，石膏主要来源于石灰石粉和硫酸反

应生成。与锂辉石锂渣相比，锂云母锂渣的物相

组成更加复杂。
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图 2    锂辉石与锂云母的锂渣 XRD
Fig.2    XRD of spodumene lithium slag and lithium mica slag

 

与矿渣、粉煤灰等组成固定的传统固废材料

相比，锂渣组分要更为复杂。比如锂渣中含有较

多碱金属离子如 K、Na 等，通常还含有 5%～

30% 不等的 S 元素。此外锂渣中还可能含有微量

其他金属离子如铍、铊、铷、铯等，需要经过检

测符合标准后才能进行资源再利用。因此锂渣中

金属离子的固定或除去也成为锂渣难处理的原因

之一，这导致近年锂渣的利用途径不仅少而且无

法大量消耗锂渣。组成复杂是早期锂云母锂渣利

用率低的主要原因，随着技术与工艺的进步，目

前急需开发新工艺新技术，利用锂云母锂渣组成

复杂的特点多样化开发处理途径。

 2.2　物理性能

锂辉石锂渣的密度为 2.39 g/cm3，粉磨 10 min

和 30 min 锂渣的比表面积分别为 4 617 cm2/g 和

5 566 cm2/g，粉磨 10 min 和 30 min 锂渣的 7 d 和

28 d 活性指数分别为 78%、81% 和 88%、101%。

锂云母锂渣的密度为 2.39 g/cm3，粉磨 10 min
和 30 min 锂渣的比表面积分别为 2 975 cm2/g 和

7 184 cm2/g，粉磨 10 min 和 30 min 锂渣的 7 d 和

28 d 活性指数分别为 96%、85% 和 90%、90%。

对比两种锂渣，可以看出，锂云母和锂辉石

锂渣的密度差异不大，锂云母锂渣在短时间粉磨

时比表面积小于锂辉石锂渣，但随着粉磨时间的

延长锂云母锂渣比表面积会大于锂辉石锂渣。锂

云母锂渣粉磨的时间越短活性反而越高，锂辉石

则需要延长粉磨时间来提升活性，短时间粉磨的

活性也低于锂云母锂渣。
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 2.3　微观形貌

图 3 为锂辉石锂渣在 2 000×和 10 000×放大倍

数下的 ESEM。由图 3（a）可以看出，锂辉石锂

渣形状整体并没有统一的形状，呈现出不规格的

颗粒状或棒状。由图 3（b）进一步观察锂辉石锂

渣的表面可以发现，锂辉石锂渣的表面为层状结

构，但层与层之间含有大量空隙且有较多断裂

面，有些面上覆盖有不致密的物相颗粒。
 
 

1 μm 1 μm

(a) 2 000× (b) 10 000×

图 3    锂辉石锂渣的 ESEM
Fig.3    ESEM pattern of spodumene lithium slag

 

图 4 为锂云母锂渣在 2 000×和 10 000×放大倍

数下的 ESEM 图。由图 4（a）可以看出，锂云母

锂渣整体呈现不规则多边形（主要为颗粒状，短

棒状及块状），局部具有层状结构。由图 4（b）
进一步放大观察锂云母锂渣发现其表面含有较多

棒状和块状晶体，棒状晶体交织在一起，但并没

有形成致密的结构，晶体间仍然存在较多空隙。

对比图 3、4 发现，锂辉石和锂云母锂渣的结构都

不紧密，但相比之下锂云母锂渣的结构孔隙明显

更大，因此锂云母锂渣的孔隙率和比表面积应该

要大于锂辉石锂渣。而且从胶凝材料角度来看，

锂云母锂渣的内部结构更有利于构建骨架，与水

化生成的凝胶一同形成致密的网络状胶凝体系。

  

(a) 2 000×

1 μm 1 μm

(b) 10 000×

图 4    锂云母锂渣的 ESEM
Fig.4    ESEM pattern of lithium mica slag

 

 2.4　孔隙结构

锂辉石和锂云母锂渣的吸脱附等温线见图 5。
根据分类，锂辉石锂渣的吸附等温线属于Ⅲ型。

锂渣粉的吸附、脱附等温线之间形成了“迟滞回

线”，根据线型，锂辉石与锂云母锂渣都为 H3 型

迟滞回线，其中 H3 型迟滞回线主要由层状颗粒引

起。当相对压力 P/P0<0.05 时，锂渣氮气吸附等温

线呈上凸型，对应于氮气吸附的第一个阶段：单

层吸附或微孔填充；而 0.05<P/P0<0.9 时，吸附等

温线缓慢上升，斜率较低，对应氮气吸附的第二

个阶段，即多层吸附；而 P/P0＞0.9 时，吸附等温

线急剧上升，对应于氮气的毛细凝聚。

根据锂辉石锂渣和锂云母锂渣的氮气吸附结

果分析可知，锂辉石锂渣比表面积为 13.396  2
m2/g，平均孔径为 6.732  9  nm，总的孔体积为

0.022 549 cm3/g。锂云母锂渣比表面积为 2.300 3
m2/g，平均孔径为 19.558  4  nm，总的孔体积为

0.005 051 cm3/g。可以发现锂云母锂渣的平均孔径

要远大于锂辉石锂渣，但总孔体积和比表面积却

远小于锂辉石锂渣，这说明锂云母锂渣孔隙少但

孔隙的孔径较大。
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图 6 为锂辉石锂渣的累计孔体积与微分孔径

分布。由图 6（a）可知，在 0～2 nm 的累计孔体

积为 0.001 0 cm3/g，在 2～50 nm 的累计孔体积逐

渐增加，达到 0.015 6 cm3/g，在 50～100 nm 的累

计孔体积达到峰值，为 0.004 1 cm3/g。由图 6（b）
可知，锂辉石锂渣孔径分布较宽，最可几孔径为

50.396 09 nm，小于 50 nm 孔占总孔体积的 80%，

而大于 50 nm 孔占总孔体积的 20%，说明锂辉石

锂渣中含有较多空隙，且主要以中孔为主。对比

图 6、7 发现，锂辉石锂渣的中孔率要远大于锂云

母锂渣，大孔率要小于锂云母锂渣，同时最可几

孔径也要小于锂云母锂渣。这说明锂云母锂渣的

总孔隙并不多，但是平均的孔隙孔径较大，这也

与图 5 的氮气吸附结果分析一致。
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图 6    锂辉石锂渣的累计孔体积与微分孔径分布
Fig.6    Accumulated pore volume and differential pore size distribution of spodumene lithium slag
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Fig.7    Accumulated pore volume and differential pore size distribution of lithium mica slag

 

 3　锂渣的建材化应用及展望

 3.1　锂渣的建材化应用研究

锂渣中的 SiO2 和 Al2O3 含量较高，因硅铝相

主要以结晶相形式存在，使得锂渣水化活性较

弱。通过高温焙烧、机械磨碎和化学浸出等手

段，可以使其具有较高的比表面能和一定的火山

灰活性，因此锂渣大多应用于建筑领域。同时也

有部分研究根据锂渣的多孔和高吸附性将其制成

吸附材料来净化环境，或是利用锂渣硅铝质特点

来合成分子筛等[19]。由于锂云母锂矿成分复杂提

锂效果不如锂辉石，且硫酸盐提取的锂渣 K、

Na 等碱元素含量较高利用难度大，以往主要研究

锂辉石锂渣的应用。随着锂渣利用工艺的进步，

近年锂云母锂渣的应用随之变多。从以下几方面

的研究进展可以对比出锂辉石和锂云母锂渣目前

的利用现状：(1) 混凝土与水泥制品；(2) 水泥；

(3) 墙体材料；(4) 烧结材料。锂渣建材化应用的前

提是经过无害化处理后符合一般工业固体废弃物

的属性且无放射性，即安全性满足要求。

 3.1.1　混凝土与水泥制品

锂渣作为水泥掺合料是目前锂渣在混凝土与

水泥制品方向最主要的应用，可以消耗大量的锂
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渣[20]。锂渣作为掺料加入水泥体系后主要影响的

是早期和后期的力学性能、抗侵蚀性能以及耐久

性等方面。这是由于锂渣中的 Al2O3 和 SiO2 和水

泥水化产物 Ca(OH)2 发生火山灰反应，生成为水

泥石提供致密结构的 C-S-H 凝胶与水化铝酸

钙[19]。通常情况下，加入锂渣可以增大稠度，并

改善混凝土的流动性、粘聚性和保水性[21]。锂渣

的掺入还可以提升混凝土的抗氯离子渗透能力，

Ca(OH)2 的消耗与 C-S-H 的生成降低了混凝土的

孔隙率，从而阻止氯离子对混凝土内部进行渗

透 [22]。研究结果表明，随着锂渣掺入量的提升，

混凝土力学性能呈现出先升后降规律，锂渣的较

佳掺入量与特性有关，但都处于 10%～30% 之

间[23]。锂辉石和锂云母锂渣都可作混凝土与水泥

掺合料，掺量、处理方式对锂渣掺合料的性能影

响见表 1。
 
 

表 1    不同处理手段、不同掺量的锂渣作掺合料制备混凝土性能
Table 1    Performance of concrete prepared with lithium slag as admixture using different treatment methods and different dosages
锂渣掺入量 掺入方式 结论

10%～30% 取代水泥制备混凝土 28 d抗压强度达到100 MPa以上[24]

0%～40% 以锂渣和矿渣及石粉复掺取代水泥制备混凝土 28 d抗压强度不低于70 MPa[24]

0%～45% 以锂渣和砂石复掺取代水泥制备混凝土 掺量10%时达到较佳抗压强度[25]

与钛矿渣粉和花岗
岩粉成比例

与钛矿渣粉或花岗岩粉复掺作为掺合料制备混凝土
m锂渣粉∶m钛矿渣粉和m锂渣粉∶m花岗岩粉均为6∶4性能

较佳[26]

0%～20% 取代水泥制备C60混凝土灌浆料 掺量不超过30%，加硅灰可增强度[27]

0%～30% 取代水泥制备混凝土 锂渣掺量20%时，混凝土的抗压强度和抗折强度较优[28]

0%～15% 与硅灰复掺取代水泥制备UHPC 25%锂渣可较大增强UHPC强度[29]

0%～30% 取代水泥制备再生骨料混凝土 20%锂渣掺量得到较大抗压强度[30]

0%～40% 锂渣高温活化后制备泡沫混凝土 锂渣活化温度应低于700 ℃[31]

0%～30% 取代水泥制备C20、C30、C40混凝土
C20、C30、C40混凝土较优掺量分别为15%、20%、

15%[32]

10%～35% 采用高温活化、机械活化和碱激发提升锂渣活性后复
掺矿粉、粉煤灰制备混凝土

锂渣较佳的煅烧温度为700 ℃，较优掺量为25%[33]

0%～60% 取代水泥制备混凝土
掺20%锂渣混凝土性能较好，掺60%锂渣混凝土环境和经

济效益较优[34]

20% 400、600、800 ℃热活化后取代水泥制备混凝土 800 ℃热活化锂渣性能较佳[35]

 

除锂渣水泥外，锂渣混凝土构件也是一种含

锂渣制品。有学者利用 Na、K 含量较高的锂云母

锂渣作为原料，进行了锂渣钢筋混凝土受压构件

力学性能研究。不仅发现锂渣的掺入能改善混凝

土构件的力学性能，同时锂渣能在一定程度上缓

解酸雨对构件的腐蚀[36]，但目前只进行了锂辉石

锂渣混凝土对酸雨的耐腐蚀性能研究。

 3.1.2　熟料及低碳水泥

锂渣的化学成分中有较高含量的 Al2O3 和

SiO2，理论上可以作为制备水泥熟料的硅铝质来

源。费文斌等[37-38] 利用硫酸法生产碳酸锂过程中

排出的锂辉石锂渣代替黏土煅烧制备了普硅水泥

熟料，结果表明选用适当率值配料在 1 450 ℃ 下

烧成的熟料各项物理性能均达有关标准，所用锂

渣中 SO3 含量不高且不含 K、Na。
锂渣中除了 Al2O3 和 SiO2 外，还含有一定量

的 SO3，可以在高温下与 Al2O3、CaO 反应生成无

水硫铝酸钙（C4A3S），可以为水泥前期提供较高

的强度。以此反应为基础，可利用锂渣烧制硫铝

酸盐水泥熟料[39]。相较于普通硅酸盐熟料，硫铝

酸盐熟料拥有早强、高强、抗渗抗冻性能好、耐

蚀和生产能耗低等特点，具有广泛的用途[40]。目

前中国的硫铝酸盐水泥主要可分为快硬型、复合

型、低碱度、自应力和出口型[41]。黎奉武等[42] 利

用锂渣、低品位铝矾土、天然石膏和石灰石为原

料成功烧制了硫铝酸盐熟料。通过实验可以发现

利用锂渣烧制硫铝酸盐熟料的较佳煅烧温度在

1 270 ～1 320 ℃，锂渣用量可以达到 10% 以上，

熟料可以制备出性能达到标准中要求的 42.5 级低

碱度硫铝酸盐水泥。

 3.1.3　墙体材料

锂渣在墙体材料中的应用主要有免烧砖和建

筑陶粒。其中免烧砖具有高强度、高耐久性的特

点，可以高效率地消耗锂渣。有研究利用水泥、

钢渣粉、粉煤灰、矿渣粉与锂渣混合制备锂渣免

烧砖，采用自然养护的方式制备出了强度高、耐
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水性能、抗冻性能好的锂渣免烧砖[43]。建筑陶粒

是一种质量轻、筒压强度高、孔隙率高、耐火性

好的陶质颗粒，具有良好的保温隔热隔水隔音性

能、抗冻性良好和抗碱集料反应性优异等，作为

轻骨料被广泛应用于建筑材料。锂渣中 SiO2 和

Al2O3 含量较高，是一种制备建筑陶粒的优质原

料，其中锂云母锂渣中 CaO、Na2O 和 K2O 的含量

可以达到 15%，在烧结过程中做熔剂氧化物，不

仅降低陶粒的烧结温度，还可降低高温液相的黏

度。曾传林 [43] 以食盐压煮法锂云母提锂渣为原

料，混掺黏土和膨润土等烧制了力学性能符合国

家标准的建材陶粒。

 3.1.4　烧结材料

锂渣还可应用于烧结材料中，如陶瓷制品中

多孔陶瓷和泡沫陶瓷的制备。黄志勇[44] 利用锂云

母浸出渣和低品位长石为主要原料制备了高强度

和低导热两种锂渣基多孔陶瓷，并研究了烧结制

度、锂渣含量以及 SiC 用量对锂渣基多孔陶瓷性

能的影响。Xiong 等[45] 采用常规高温发泡法制备

了不同锂渣—高岭土泡沫陶瓷，研究了烧结温度

和配方对泡沫陶瓷形貌和力学性能的影响。常星

岚等[46] 以粉煤灰、锂渣、长石、滑石和碳化硅为

原料，在 1 180、1 200、1 220、1 240 ℃ 分别保

温 10、20、40、60 min 烧结制备发泡陶瓷试样，

并系统研究了锂渣掺量对发泡陶瓷物相组成、显

微结构、孔隙率以及抗压强度的影响。诸多研究

表明，锂云母锂渣基陶瓷材料的制备从技术上完

全可行，锂云母锂渣中的碱土金属离子如 Na 和

K 等还可以促进硅氧四面体的断裂和分离，有利

于降低陶瓷的熔化温度，对烧制工艺流程有重要

作用。

 3.2　锂渣的应用前景与展望

锂渣作为硅铝质材料，普遍被应用于建材领

域，但随着建筑行业下行，以及国家“碳中和、碳

达峰”政策的施行，众多企业面临着减产或创新转

型的压力。锂渣在建材领域的使用量面临降低的

风险，随着水泥价格下行，锂渣建材化所拥有的

成本优势也进一步降低，因此有必要在锂渣建材

化应用中进行技术创新来应对当前局势。一方

面，建材领域目前仍然是能较大量消耗锂渣的方

向，应在已有的基础上继续深入研究如何绿色环

保低碳的将锂渣利用起来，顺应政策和市场的需

求；另一方面，我们需要大力探索建材化以外的

锂渣资源利用化方向，比如利用锂渣硅铝质特点

制备分子筛、利用锂渣水化活性制备增稠剂、利

用多孔性制备吸附材料、作为造纸和橡胶填料、

进行锂的二次提取回收等，但锂渣利用率较低，

需要进一步研究或发掘更多利用方向。相较于锂

辉石锂渣，锂云母锂渣目前堆存量日益增加，锂

云母锂渣再利用的研究亟须开展。锂云母锂渣粉

磨后比表面积大、高活性与含 Na、K 碱性离子等

特性应得到利用，锂云母锂渣在玻璃材料、路基

土等工程材料、加气混凝土材料中的应用较少，

可从上述领域进行研究。今后需要对锂渣制定相

关标准将其细致区分，根据锂渣成分、特性将其

用到适合的领域。

 4　结　论

（1）锂辉石锂渣与锂云母锂渣都是以硅铝质

矿物为主的工业固体废弃物，与目前常见的建材

原料组分类似，进行无害化技术处理后放射性、

重金属离子含量、浸出毒性等安全性指标皆符合

相关标准要求，可应用于建材领域。

（2）锂辉石锂渣与锂云母锂渣易磨性良好，

10 min 粉磨后锂云母锂渣比表面积小于锂辉石锂

渣，活性更高；30 min 粉磨后锂云母锂渣比表面

积大于锂辉石锂渣，但活性更低。锂辉石锂渣与

锂云母锂渣结构都含较多孔隙，相比锂辉石锂

渣，锂云母锂渣总孔隙更少，平均孔隙孔径更

大。锂云母锂渣的结构更利于构建骨架，与水化

生成的凝胶形成致密的网络状胶凝体系。

（3）研究表明锂辉石和锂云母锂渣都可作混

凝土与水泥掺合料，锂辉石锂渣常用于烧制普通

硅酸盐水泥熟料，锂云母锂渣适于制备墙体材料

与烧结材料。未来锂渣建材化利用需着重研究无

害化处理、全组分协同利用、高效活化等技术。
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Comparison of the Characteristics of Domestic Lithium Ores and Lithium
Slag and its Application for Building Materialsization: A Review

CHEN Zhongfa1,  SONG Xinjun1,  ZHANG Yuyue2,  LU Ya1,3

(1.Jiangxi Provincial Research and Design Institute of Building Materials Co., Ltd., Jiangxi Engineering and
Technology Research Center for Safety of Solid Waste Building Materials Products, Nanchang, Jiangxi

330001, China; 2.Marquette University, Wisconsin, USA; 3.Harbin Institute of Technology, Harbin,
Heilongjiang 150000, China)

Abstract: Lithium slag  is  a  new type  of  large  and  difficult  to  treat  solid  waste  that  has  emerged  with  the
booming development of the lithium battery industry. Due to its complex composition, there are differences
in the characteristics of different lithium slag. The article tested lithium pyroxene and lithium mica slag by
characterization  means  such  as  XRF,  XRD,  physical  property  test,  SEM  test,  and  pore  structure  test,  and
studied  the  physical  and  chemical  properties  of  lithium  pyroxene  and  lithium  mica  slag.  Based  on
experimental research and conclusions from previous studies, this article provides a comprehensive analysis
of lithium ore characteristics, lithium extraction processes, lithium slag properties, and lithium slag storage
conditions.  After  treatment,  lithium  slag  exhibits  pozzolanic  activity  and  can  be  utilized  as  a  building
material in applications such as concrete and cement products, cement, wall materials, and sintered materials.
The article elucidates the similarities and differences between lithium spodumene and lithium mica slag in
their building material applications. It also proposes reasonable suggestions for future lithium slag resource
reuse pathways based on the distinct characteristics of different slags, providing reference for the sustainable
development of the lithium battery industry.
Keywords: lithium slag; spodumene; lithium mica; building materials
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