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HE Dongsheng'?, CHEN Beibei', ZHANG Kecheng'”, TANG Yuan', LI Zhili', QIN Fang', CHI Ru’an'
(1.School of Resources and Safety Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073,
China; 2.Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China; 3.Hubei Engineering Design &
Research Institute Co., Ltd., Wuhan, Hubei 430071, China)

Abstract: In this paper, the coal fly ash was used as the main raw material, and the low-cost P-type zeolite
adsorbent was synthesized through the hydrothermal process.The coal fly ash and synthetic zeolite were
systematically characterized by means of X-ray diffraction (XRD), scanning electronic microscope (SEM),
and energy-dispersive X-ray analysis (EDAX). The effects of synthetic zeolites obtained at different
conditions such as synthesis time, alkali concentration, and temperature on the phosphorus content of
simulated phosphorus-containing wastewater was investigated through single-factor static adsorption
experiments.The results show that during hydrothermal synthesis, the coal fly ash particles will lose their
original form, and P-type zeolite, hydroxy-sodalite or faujasite crystals will be found in the synthesis
products. The longer the synthesis time is, the better the crystallinity of the zeolite crystal and the rougher the
surface are. The lower the alkali concentration or the synthesis temperature are, the more unfavorable for the
synthesis of zeolite adsorbent is. At the conditions of synthesis time of 8 hours, alkali concentration of
1 mol/L, and synthesis temperature of 120 °C, the synthetic zeolite product was treated with an initial
concentration of 5 mg/L simulated wastewater, and its removal rate of phosphorus could reached 30.1%.

Keywords: coal fly ash; synthetic zeolite; phosphorus removal; adsorption; wastewater treatment
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(E#F 1137)
Effect of Ultrasonic Treatment on the Floatability of Chalcopyrite with
Different Degrees of Oxidation

QI Zhiwei', YAO Jin', YIN Wanzhong'?, SUN Wenju'

(1.School of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning 110819, China;
2.Zijin School of Geology and Mining, Fuzhou University, Longyan, Fuzhou 364299, China)
Abstract: Chalcopyrite is prone to surface oxidation during storage, which changes the surface properties
and floatability of chalcopyrite, affects the subsequent flotation behavior and the adsorption of reagents on
the surface of chalcopyrite. In view of the problem of poor flotation recovery of chalcopyrite due to
oxidation, chalcopyrite was used as the research object, and chalcopyrite with different degrees of oxidation
was prepared to investigate the effect of ultrasonic treatment on the surface properties and floatability of
chalcopyrite with different degrees of oxidation. The results of single mineral flotation tests show that
ultrasonic treatment in the xanthate system, the flotation recovery of chalcopyrite increased, the floatability
improved, and the recovery rate of chalcopyrite by 23.26 percentage points. The effects of ultrasonic
treatment on the wettability and surface roughness of oxidized chalcopyrite surfaces were analyzed using
atomic force microscopy(AFM), scanning electron microscopy (SEM), and contact angle test.This provides a

guiding idea for improving the flotation recovery of chalcopyrite.
Keywords: mineral processing engineering; chalcopyrite; ultrasonic treatment; oxation; flotation
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